An Extrapolation of a Beautiful Series

Calculus Level 3

( x + y ) ( x y ) + 1 2 ! ( x + y ) ( x y ) ( x 2 + y 2 ) + 1 3 ! ( x + y ) ( x y ) ( x 4 + y 4 + x 2 y 2 ) + = ? \begin{aligned} && (x+y)(x-y) \\ &&+ \dfrac{1}{2!} (x+y)(x-y)(x^2 + y^2) \\ &&+ \dfrac{1}{3!} (x+y)(x-y)(x^4 + y^4 + x^2 y^2 ) \\ &&+ \ldots \\ &&= \ ? \end{aligned}

Try my set
e x 2 + e y 2 e^{x^2} + e^{y^2} e x 2 e y 2 e^{x^2} - e^{y^2} None of these options e x 2 y 2 e^{x^2 - y^2} e x 2 + y 2 e^{x^2 + y^2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 20, 2015

( x + y ) ( x y ) + 1 2 ! ( x + y ) ( x y ) ( x 2 + y 2 ) + 1 3 ! ( x + y ) ( x y ) ( x 2 + y 2 + x 2 y 2 ) + . . . = x 2 y 2 + 1 2 ! ( x 4 y 4 ) + 1 3 ! ( x 6 y 6 ) + . . . = ( 1 + x 2 + 1 2 ! x 4 + 1 3 ! x 6 + . . . ) ( 1 + y 2 + 1 2 ! y 4 + 1 3 ! y 6 + . . . ) = e x 2 e y 2 (x+y)(x-y)+\dfrac{1}{2!}(x+y)(x-y)(x^2+y^2)\\ \quad \quad +\dfrac{1}{3!}(x+y)(x-y)(x^2+y^2+x^2y^2)+... \\ = x^2-y^2 + \dfrac{1}{2!} (x^4-y^4) + \dfrac{1}{3!} (x^6-y^6) + ... \\ = \left(1 + x^2 + \dfrac{1}{2!} x^4 + \dfrac{1}{3!} x^6 + ...\right) - \left(1 + y^2 + \dfrac{1}{2!} y^4 + \dfrac{1}{3!} y^6 + ...\right) \\ = \boxed{e^{x^2} - e^{y^2}}

Nice one sir.

Vishwak Srinivasan - 6 years ago

Log in to reply

Thank you. Set more problems for every one.

Chew-Seong Cheong - 6 years ago

Log in to reply

Sure will do sir.

Vishwak Srinivasan - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...