So which one is it?

Algebra Level 4

a b a 2 + 3 b 2 + c b b 2 + 3 c 2 + a c c 2 + 3 a 2 \frac{ab}{a^{2}+3b^{2}}+\frac{cb}{b^{2}+3c^{2}}+\frac{ac}{c^{2}+3a^{2}}

If the maximum value of the above inequality is M M for positive numbers a , b , c a,b,c . What is the value of 4 M + 4 4M + 4 ?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Calvin Lin Staff
Mar 12, 2015

This is a standard Cauchy Schwarz problem.

First, we will show that ( a b ) 2 3 a 2 (\sum \sqrt{ ab} )^2 \leq 3 \sum a^2 . This is true because we have

1 2 ( a 2 + a 2 + b 2 + c 2 ) 2 a b c 1 2 ( a 2 + b 2 + b 2 + c 2 ) 2 b c a 1 2 ( a 2 + b 2 + c 2 + c 2 ) 2 c a b a 2 + b 2 + c 2 a b + b c + c a 3 ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) 2 \begin{aligned} \frac{1}{2} (a^2 + a^2 + b^2 + c ^2) & \geq 2 a \sqrt{bc} \\ \frac{1}{2} (a^2 + b^2 + b^2 + c ^2) & \geq 2 b \sqrt{ca} \\ \frac{1}{2} (a^2 + b^2 + c^2 + c ^2) & \geq 2 c \sqrt{ab} \\ a^2 + b^2 + c^2 & \geq ab + bc + ca\\ \hline \\ 3(a^2 + b^2 + c^2 ) & \geq ( \sqrt{ab} + \sqrt{bc} + \sqrt{ca} ) ^ 2 \\ \end{aligned}


By Cauchy Schwarz, we have ( a b a 2 + 3 b 2 ) ( a 2 + 3 b 2 ) ( a b ) 2 \left ( \sum \frac{ ab}{ a^2 + 3b^2 } \right ) \left( \sum a^2 + 3b^2 \right ) \leq \left( \sum \sqrt{ab} \right) ^ 2 , or that

a b a 2 + 3 b 2 ( a b ) 2 4 a 2 3 4 \sum \frac{ ab}{ a^2 + 3b^2 } \leq \frac{ (\sum \sqrt{ ab} ) ^ 2 } { 4 \sum a^2 } \leq \frac{3}{4}

Thus, 4 M + 4 = 7 4M + 4 = 7 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...