An inequality problem by Gurido Cuong

Algebra Level 5

1 a + 3 b 3 + 1 b + 3 c 3 + 1 c + 3 a d 3 24 a b c + 12 a b c d \dfrac{1}{\sqrt[3]{a+3b}}+\dfrac{1}{\sqrt[3]{b+3c}}+\dfrac{1}{\sqrt[3]{c+3a-d}}-24abc+12abcd If a , b a,b and c c are positive reals satisfying a + b + c = 3 4 a+b+c=\dfrac{3}{4} and d d is a non-negative real, minimize the expression above to 3 decimal places


The answer is 2.625.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

P C
Feb 15, 2016

We call the expression L, we see that c + 3 a d c + 3 a 1 c + 3 a d 3 1 c + 3 a 3 c+3a-d\leq c+3a \Rightarrow \frac{1}{\sqrt[3]{c+3a-d}}\geq\frac{1}{\sqrt[3]{c+3a}} 12 a b c d 0 12abcd\geq 0 Now we choose A = 1 a + 2 b 3 + 1 b + 2 c 3 + 1 c + 2 a 3 A=\frac{1}{\sqrt[3]{a+2b}}+\frac{1}{\sqrt[3]{b+2c}}+\frac{1}{\sqrt[3]{c+2a}} B = ( a + 2 b ) + ( b + 2 c ) + ( c + 2 a ) = 3 B= (a+2b)+(b+2c)+(c+2a)=3 Applying Holder's Inequality A 3 B 3 4 A^3B\geq 3^4 A 3 \Leftrightarrow A\geq 3 With 24 a b c -24abc we easily applying AM-GM to get 24 a b c 24 ( a + b + c 3 ) 3 = 24. 4 3 -24abc\geq -24\big(\frac{a+b+c}{3}\big)^3=-24.4^{-3}

Finally L 3 24. 4 3 = 2.625 L\geq 3-24.4^{-3}=2.625 The equality holds when a = b = c = 1 4 a=b=c=\frac{1}{4} and d = 0 d=0

Quang Minh
Feb 15, 2016

áp dụng cauchy 3 số cho 3 hạng tử đầu đúng k bạn?

bài này mình dùng holder cho chúng

P C - 5 years, 4 months ago

Bài này đề hsg trường mình.

Son Nguyen - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...