3 a + 3 b 1 + 3 b + 3 c 1 + 3 c + 3 a − d 1 − 2 4 a b c + 1 2 a b c d If a , b and c are positive reals satisfying a + b + c = 4 3 and d is a non-negative real, minimize the expression above to 3 decimal places
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
áp dụng cauchy 3 số cho 3 hạng tử đầu đúng k bạn?
bài này mình dùng holder cho chúng
Bài này đề hsg trường mình.
Problem Loading...
Note Loading...
Set Loading...
We call the expression L, we see that c + 3 a − d ≤ c + 3 a ⇒ 3 c + 3 a − d 1 ≥ 3 c + 3 a 1 1 2 a b c d ≥ 0 Now we choose A = 3 a + 2 b 1 + 3 b + 2 c 1 + 3 c + 2 a 1 B = ( a + 2 b ) + ( b + 2 c ) + ( c + 2 a ) = 3 Applying Holder's Inequality A 3 B ≥ 3 4 ⇔ A ≥ 3 With − 2 4 a b c we easily applying AM-GM to get − 2 4 a b c ≥ − 2 4 ( 3 a + b + c ) 3 = − 2 4 . 4 − 3
Finally L ≥ 3 − 2 4 . 4 − 3 = 2 . 6 2 5 The equality holds when a = b = c = 4 1 and d = 0