An infinite number of Multiple Integrals

Calculus Level 2

Compute:

0 1 x 1 d x 1 \displaystyle \int_{0}^{1} x_1 d x_1 + 0 1 0 1 x 1 x 2 d x 2 d x 1 \displaystyle \int_{0}^{1} \int_{0}^{1} x_1*x_2 \,d x_2\, d x_1 + 0 1 0 1 0 1 x 1 x 2 x 3 d x 3 d x 2 d x 1 \displaystyle \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x_1*x_2*x_3 \,d x_3\, d x_2\, d x_1 +

\ldots + 0 1 0 1 0 1 0 1 x 1 x 2 x n 1 x n d x n d x n 1 d x 2 d x 1 \displaystyle \int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} \int_{0}^{1} x_1*x_2*\ldots*x_{n-1}*x_n \, d x_n\, d x_{n-1}\, \ldots\, d x_2\, d x_1

as n n\rightarrow \infty

The essence of the question is to calculate the sum of all multiple integrals with the bounds 0 and 1 and an inner term of n = 1 n = n \displaystyle \prod_{n=1}^{n=\infty} n , starting with 0 1 x 1 d x 1 \displaystyle \int_{0}^{1} x_1 d x_1 and ending with the infinite multiple integral 0 1 0 1 0 1 0 1 x 1 x 2 x n 1 x n d x n d x n 1 d x 2 d x 1 \displaystyle \int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} \int_{0}^{1} x_1*x_2*\ldots*x_{n-1}*x_n \, d x_n\, d x_{n-1}\, \ldots\, d x_2\, d x_1 .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Peter Burbery
Apr 10, 2021

First, let's compute the base case integral where only one dimension is present.

0 1 x 1 d x 1 = 1 2 \displaystyle \int_{0}^{1} x_1 d x_1=\frac{1}{2}

Let's continue computing multiple integrals and see if we notice a pattern:

0 1 0 1 x 1 x 2 d x 2 d x 1 = 1 4 \displaystyle \int_{0}^{1} \int_{0}^{1} x_1*x_2 \,d x_2\, d x_1=\frac{1}{4}

0 1 0 1 0 1 x 1 x 2 x 3 d x 3 d x 2 d x 1 = 1 8 \displaystyle \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x_1*x_2*x_3 \,d x_3\, d x_2\, d x_1=\frac{1}{8}

We now notice that we have the following first terms 1 2 , 1 4 , 1 8 \displaystyle {\frac{1}{2},\frac{1}{4},\frac{1}{8}}

We see a pattern of a n = 1 2 n \displaystyle a_n=\frac{1}{2^n}

The sum of this geometric series is famously known to be 1:

n = 1 n = 1 2 n = 1 2 1 1 2 = 1 2 1 2 = 1 \displaystyle \sum_{n=1}^{n=\infty} {\frac{1}{2^n}}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=\frac{\frac{1}{2}}{\frac{1}{2}}=1

And so we arrive at 1 as our answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...