An infinite product inside a series

Calculus Level 5

For each positive integer m m we define the function P ( m ) : = k = 1 ( 1 ( 2 m ) 2 ( 2 k 1 ) 2 ) . P(m):=\prod_{k=1}^\infty\left(1-\dfrac{(2m)^2}{(2k-1)^2}\right). If m = 1 P ( m ) m 2 + 2 m 1 m 2 2 m 3 = a b π + c d π 2 \sum_{m=1}^\infty P(m)\dfrac{m^2+2m-1}{m^2-2m^3}=\dfrac ab \pi+\dfrac cd \pi^2 for some positive integers a , b , c a,b,c and d d such that gcd ( a , b ) = gcd ( c , d ) = 1 \gcd(a,b)=\gcd(c,d)=1 , find a + b + c + d a+b+c+d .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Define the infinite cosine product by : cos ( π x ) = k = 1 ( 1 4 x 2 ( 2 k 1 ) 2 ) \displaystyle \cos (\pi x) = \prod_{k=1}^{\infty} (1-\frac{4x^2}{(2k-1)^2}) and in that sense, P ( m ) = cos ( π m ) = ( 1 ) m P(m)=\cos(\pi m)=(-1)^m

Since, m 2 + 2 m 1 m 2 2 m 3 = 1 m 2 1 2 m 1 \displaystyle \frac{m^2+2m-1}{m^2-2m^3} = -\frac{1}{m^2}-\frac{1}{2m-1}

Our sum S = m 1 P ( m ) m 2 + 2 m 1 m 2 2 m 3 = m 1 ( 1 ) m 1 ( 1 m 2 + 1 2 m 1 ) \displaystyle S=\sum_{m\ge 1}P(m)\frac{m^2+2m-1}{m^2-2m^3} = \sum_{m\ge 1}(-1)^{m-1} (\frac{1}{m^2}+\frac{1}{2m-1})

So, S = m = 1 ( 1 ) m 1 m 2 + ( 1 ) m 1 2 m 1 = π 2 12 + π 4 \displaystyle S=\sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m^2}+\frac{(-1)^{m-1}}{2m-1} = \frac{\pi^2}{12}+\frac{\pi}{4} and thus making the answer 1 + 4 + 1 + 12 = 18 \boxed{1+4+1+12=18}

Well done! If one does not recall the product representation of the cosine function, a way is to define the sequence a n : = k = 1 n ( 1 ( 2 m ) 2 ( 2 k 1 ) 2 ) a_n:=\prod_{k=1}^n\left(1-\frac{(2m)^2}{(2k-1)^2}\right) and deduce that a n = ( 1 ) m Γ ( 1 2 + m + n ) Γ ( 1 2 m + n ) Γ ( 1 2 + n ) 2 . a_n=\frac{(-1)^m\Gamma(\tfrac12+m+n)\Gamma(\tfrac12-m+n)}{\Gamma(\tfrac12+n)^2}. Thus, using Stirling approximation it follows that a n ( 1 ) m a_n\to(-1)^m .

Diego G - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...