If the equation above holds true for positive integers and , then find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The given integral can be written as I = n = 1 ∑ ∞ n 1 ∫ 0 ∞ z + 2 π n sin z d z = n = 1 ∑ ∞ n 1 ∫ 0 ∞ z + 2 π sin n z d z = n = 1 ∑ ∞ n 1 m = 1 ∑ ∞ ∫ 2 ( m − 1 ) π 2 m π z + 2 π sin n z d z = n = 1 ∑ ∞ n 1 m = 1 ∑ ∞ ∫ 0 2 π z + 2 m π sin n z d z = m = 1 ∑ ∞ ∫ 0 2 π z + 2 m π 1 n = 1 ∑ ∞ n sin n z d z = m = 1 ∑ ∞ ∫ 0 2 π 2 ( z + 2 m π ) π − z d z = π m = 1 ∑ ∞ [ ( m + 1 ) ln ( 1 + m 1 ) − 1 ] = π ⋅ S Now, e S = M → ∞ lim e − M m = 1 ∏ M ( 1 + 1 / m ) m + 1 / 2 = M → ∞ lim e − M M ! ( M + 1 ) M M + 1 = M → ∞ lim M M e − M 2 π M e − M ( M + 1 ) M M + 1 ( Using Stirling ) = 2 π 1 M → ∞ lim ( 1 + M 1 ) M = 2 π e Thus, I = π ln ( 2 π e ) = π ( 1 − ln 2 π ) Which gives the answer 3 .