An Infinite Trigonometric Product

Calculus Level 4

Define the function f ( x ) = n = 1 cos x 2 n . f(x) = \prod_{n= 1}^\infty \cos \frac{x}{2^n}. Compute f ( 1 ) f(1) .


The answer is 0.841.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 16, 2018

f ( x ) = n = 1 cos x 2 n = lim n cos x 2 × cos x 2 2 × cos x 2 3 × × cos x 2 n 2 × cos x 2 n 1 × cos x 2 n = lim n cos x 2 × cos x 2 2 × cos x 2 3 × × cos x 2 n 2 × cos x 2 n 1 × cos x 2 n × sin x 2 n sin x 2 n = lim n cos x 2 × cos x 2 2 × cos x 2 3 × × cos x 2 n 2 × cos x 2 n 1 × sin x 2 n 1 2 sin x 2 n = lim n cos x 2 × cos x 2 2 × cos x 2 3 × × cos x 2 n 2 × sin x 2 n 2 2 2 sin x 2 n = lim n cos x 2 × cos x 2 2 × cos x 2 3 × × sin x 2 n 3 2 3 sin x 2 n = lim n cos x 2 × sin x 2 2 n 1 sin x 2 n = lim n sin x 2 n sin x 2 n = lim n sin x x sin x 2 n x 2 n = sin x x \begin{aligned} f(x) & = \prod_{n=1}^\infty \cos \frac x{2^n} \\ & = \lim_{n \to \infty} \cos \frac x{2} \times \cos \frac x{2^2} \times \cos \frac x{2^3} \times \cdots \times \cos \frac x{2^{n-2}} \times \cos \frac x{2^{n-1}} \times \cos \frac x{2^n} \\ & = \lim_{n \to \infty} \cos \frac x{2} \times \cos \frac x{2^2} \times \cos \frac x{2^3} \times \cdots \times \cos \frac x{2^{n-2}} \times \cos \frac x{2^{n-1}} \times \cos \frac x{2^n} \times \frac {\sin \frac x{2^n}}{\sin \frac x{2^n}} \\ & = \lim_{n \to \infty} \cos \frac x{2} \times \cos \frac x{2^2} \times \cos \frac x{2^3} \times \cdots \times \cos \frac x{2^{n-2}} \times \cos \frac x{2^{n-1}} \times \frac {\sin \frac x{2^{n-1}}}{2 \sin \frac x{2^n}} \\ & = \lim_{n \to \infty} \cos \frac x{2} \times \cos \frac x{2^2} \times \cos \frac x{2^3} \times \cdots \times \cos \frac x{2^{n-2}} \times \frac {\sin \frac x{2^{n-2}}}{2^2 \sin \frac x{2^n}} \\ & = \lim_{n \to \infty} \cos \frac x{2} \times \cos \frac x{2^2} \times \cos \frac x{2^3} \times \cdots \times \frac {\sin \frac x{2^{n-3}}}{2^3 \sin \frac x{2^n}} \\ & = \lim_{n \to \infty} \cos \frac x{2} \times \frac {\sin \frac x{2}}{2^{n-1} \sin \frac x{2^n}} \\ & = \lim_{n \to \infty} \frac {\sin x}{2^n \sin \frac x{2^n}} \\ & = \lim_{n \to \infty} \frac {\sin x}{\frac {x \sin \frac x{2^n}}{\frac x{2^n}}} \\ & = \frac {\sin x}x \end{aligned}

Therefore, f ( 1 ) = sin 1 1 0.841 f(1) = \dfrac {\sin 1}1 \approx \boxed{0.841} .

Alan Yan
Jan 15, 2018

Let P N = i = 1 N cos x 2 n = sin x 2 N sin x 2 N . P_N = \prod_{i = 1}^N \cos \frac{x}{2^n} = \frac{\sin x}{2^N \sin\frac{x}{2^N}}. Taking the limit as N N \to \infty , we get sin x x \frac{\sin x}{x} , giving the answer sin 1 \boxed{\sin 1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...