Find the value of A + B + C , given the following: ∫ 1 ∞ ( arcsin ( x 1 ) − x 1 ) d x = A + ln B − C π
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First, split the integral into two parts for it to become
∫ 1 ∞ arcsin ( x 1 ) d x − ∫ 1 ∞ x 1 d x
Then, make the substitution x = csc θ and d x = − cot ( θ ) csc ( θ ) d θ for the first integral to get
− ∫ a b θ cot θ csc θ d θ − ln ( x ) ∣ 1 ∞
NOTE: At the end, we will plug x back into the integral because it is impossible to obtain an upper limit in the new integral.
Apply integration by parts to get θ csc θ ∣ a b − ∫ a b csc θ d θ − ln ( x ) ∣ 1 ∞
Integrate to and substitute x back to get ( x arcsin ( x 1 ) + ln ( x + cot ( arcsin ( x 1 ) ) ) − ln ( x ) ) ∣ ∣ ∣ ∣ 1 ∞
Combine the two natural logaritms and use cos ( arcsin ( x ) ) = 1 − x 2 to obtain
x → ∞ lim ( x arcsin x 1 ) − 2 π + ln ( 1 + x x 1 − x 1 2 ) ∣ ∣ ∣ ∣ 1 ∞
Using the identity lim x → 0 x arcsin ( x ) = 1 and solving the logarithm, we have
1 − 2 π + ln ( 1 + 1 ) − ln ( 1 ) = ln ( 2 ) − 2 π + 1
Finally, 2 + 2 + 1 = 5
Problem Loading...
Note Loading...
Set Loading...
Put x = t 1 ⇒ d x = − t 2 1 d t
we have
∫ 0 1 ( t 2 arcsin ( t ) − t 1 ) d t
Using integration by parts taking arcsin ( t ) as first function we get
( − t 1 arcsin ( t ) ) 0 1 + ∫ 0 1 ( t 1 − t 2 1 d t ) − ln t ∣ 0 1
Using x → 0 lim x arcsin ( x ) = 1 and substituting t = sin θ in the integral
− 2 π + 1 + ∫ 0 2 π csc θ d θ + a → 0 lim ln ( a )
⇒ − 2 π + 1 + a → 0 lim ( ln ( tan ( 2 arcsin t ) ) a 1 + a → 0 lim ln ( a )
⇒ − 2 π + 1 − ln ( tan ( 2 arcsin a ) ) + ln ( a )
As a → 0 t h u s arcsin ( a ) = a
⇒ − 2 π + 1 − a → 0 lim ln ⎝ ⎜ ⎛ 2 . 2 a tan ( 2 a ) ⎠ ⎟ ⎞
x → 0 lim x tan x = 1
= − 2 π + 1 + ln ( 2 )