An \infty-\infty Integral

Calculus Level 5

Find the value of A + B + C A+B+C , given the following: 1 ( arcsin ( 1 x ) 1 x ) d x = A + ln B π C \int_1^\infty\left(\arcsin\left(\frac{1}{x}\right)-\dfrac{1}{x}\right) \, dx=A+\ln B-\dfrac{\pi}{C}


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tanishq Varshney
Jan 19, 2016

Put x = 1 t d x = 1 t 2 d t x=\frac{1}{t} \Rightarrow dx=-\frac{1}{t^2} dt

we have

0 1 ( arcsin ( t ) t 2 1 t ) d t \large{\displaystyle \int^{1}_{0} \left( \frac{\arcsin (t)}{t^2}-\frac{1}{t} \right) dt}

Using integration by parts taking arcsin ( t ) \arcsin(t) as first function we get

( 1 t arcsin ( t ) ) 0 1 + 0 1 ( 1 t 1 t 2 d t ) ln t 0 1 \large{\left(-\frac{1}{t} \arcsin(t) \right)^{1}_{0}+\displaystyle \int^{1}_{0} \left( \frac{1}{t \sqrt{1-t^2} }dt \right) - \ln t|^{1}_{0} }

Using lim x 0 arcsin ( x ) x = 1 \large{\displaystyle \lim_{x \to 0} \frac{\arcsin(x)}{x}=1} and substituting t = sin θ t=\sin \theta in the integral

π 2 + 1 + 0 π 2 csc θ d θ \large{-\frac{\pi}{2}+1+\displaystyle \int^{\frac{\pi}{2}}_{0} \csc \theta d \theta} + lim a 0 ln ( a ) \large{+ \displaystyle \lim_{a \to 0} \ln (a)}

π 2 + 1 + lim a 0 ( ln ( tan ( arcsin t 2 ) ) a 1 + lim a 0 ln ( a ) \large{\Rightarrow -\frac{\pi}{2}+1+\displaystyle \lim_{a \to 0} \left( \ln(\tan \left(\frac{\arcsin t}{2}\right)\right)^{1}_{a}+ \displaystyle \lim_{a \to 0} \ln (a)}

π 2 + 1 ln ( tan ( arcsin a 2 ) ) + ln ( a ) \large{\Rightarrow -\frac{\pi}{2}+1 - \ln \left( \tan \left(\frac{\arcsin a}{2}\right)\right)+\ln (a)}

As a 0 t h u s arcsin ( a ) = a a \to 0~thus~ \arcsin(a)=a

π 2 + 1 lim a 0 ln ( tan ( a 2 ) 2. a 2 ) \Large{\Rightarrow -\frac{\pi}{2}+1 - \displaystyle \lim_{a \to 0} \ln \left( \frac{\tan \left( \frac{a}{2} \right)}{2. \frac{a}{2}} \right)}

lim x 0 tan x x = 1 \displaystyle \lim_{x \to 0} \frac{\tan x}{x}=1

= π 2 + 1 + ln ( 2 ) \large{=-\frac{\pi}{2}+1+\ln(2)}

Matthew Riedman
Jan 30, 2016

First, split the integral into two parts for it to become

1 arcsin ( 1 x ) d x 1 1 x d x \displaystyle \int_{1}^{\infty}\arcsin\left(\frac{1}{x}\right)dx-\int_{1}^{\infty}\frac{1}{x}dx

Then, make the substitution x = csc θ x=\csc \theta and d x = cot ( θ ) csc ( θ ) d θ dx=-\cot(\theta)\csc(\theta)d\theta for the first integral to get

a b θ cot θ csc θ d θ ln ( x ) 1 \displaystyle -\int_{a}^{b}\theta\cot\theta\csc\theta d\theta-\ln(x)|_{1}^{\infty}

NOTE: At the end, we will plug x x back into the integral because it is impossible to obtain an upper limit in the new integral.

Apply integration by parts to get θ csc θ a b a b csc θ d θ ln ( x ) 1 \displaystyle \theta\csc\theta|_{a}^{b}-\int_{a}^{b}\csc\theta d\theta-\ln(x)|_{1}^{\infty}

Integrate to and substitute x x back to get ( x arcsin ( 1 x ) + ln ( x + cot ( arcsin ( 1 x ) ) ) ln ( x ) ) 1 \displaystyle \bigg(x\arcsin\bigg( \frac{1}{x}\bigg)+\ln\bigg(x+\cot \bigg( \arcsin\bigg( \frac{1}{x}\bigg)\bigg)\bigg) -\ln(x)\bigg)\bigg|_{1}^{\infty}

Combine the two natural logaritms and use cos ( arcsin ( x ) ) = 1 x 2 \cos(\arcsin(x))=\sqrt{1-x^{2}} to obtain

lim x ( x arcsin 1 x ) π 2 + ln ( 1 + x 1 1 x 2 x ) 1 \displaystyle \lim_{x\to\infty}\bigg(x\arcsin\frac{1}{x}\bigg)-\frac{\pi}{2}+\ln\bigg(1+\frac{x\sqrt{1-\frac{1}{x}^2}}{x}\bigg)\bigg|_{1}^{\infty}

Using the identity lim x 0 arcsin ( x ) x = 1 \lim_{x \to 0}\frac{\arcsin(x)}{x}=1 and solving the logarithm, we have

1 π 2 + ln ( 1 + 1 ) ln ( 1 ) = ln ( 2 ) π 2 + 1 \displaystyle 1-\frac{\pi}{2}+\ln(1+1)-\ln(1)=\ln(2)-\frac{\pi}{2}+1

Finally, 2 + 2 + 1 = 5 2+2+1=\boxed{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...