As shown, a rectangle ( not a square) is partitioned into four triangles: 1 equilateral and 3 right triangles. The areas of two of the right triangles are 30 and 50. Find the area x of the remaining right triangle.
Bonus: Find the general relationship among the areas of the 3 right triangles.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Very good but could you add a figure?
Starting with angle relationships:
At point A: a + 3 π + 2 π − b = π ⇒ a − b = 6 π .
Similarly, b − c = 6 π a n d a − c = 3 π .
Now with segment lengths relationships: Let L be the length of the side of the equilateral triangle; its area is L 2 4 3 . Let w and h be the rectangle's width and height, respectively, and w 1 , w 2 , h 1 , h 2 the subdivided width and height where the rectangle intersects the triangle, with: w = w 1 + w 2 a n d h = h 1 + h 2
Given that the three outer triangles are rectangle, we have:
w 1 = L cos a ; w 2 = L sin b ; w = L cos c ; h 1 = L sin c ; h 2 = L cos b ; h = L sin a
Surface area of A B C = w 2 h 2 / 2 = 5 0 ⇒ 2 L 2 sin b cos b = 4 L 2 sin 2 b = 5 0 ⇒ L 2 = sin 2 b 2 0 0 ( I )
Surface area of A E F = w 1 h / 2 = 3 0 ⇒ 2 L 2 sin a cos a = 4 L 2 sin 2 a = 3 0 ⇒ L 2 = sin 2 a 1 2 0 ( I I )
Surface area of E D C : x = h 1 w / 2 = 2 L 2 sin c cos c = 4 L 2 sin 2 c ( I I I )
E q u a t i o n s ( I ) a n d ( I I I ) ⇒ x = sin 2 b 2 0 0 . 4 sin 2 c = 5 0 sin 2 b sin 2 c = 5 0 sin 2 b sin ( 2 b − 3 π ) = 5 0 sin 2 b sin 2 b . cos 3 π − cos 2 b . sin 3 π = 2 5 − 2 5 3 sin 2 b cos 2 b
E q u a t i o n s ( I ) a n d ( I I ) ⇒ sin 2 b 2 0 0 = sin 2 a 1 2 0 ⇒ 5 3 = sin 2 b sin 2 a ⇒ sin 2 b sin ( 3 π + 2 b ) = sin 2 b sin 3 π cos 2 b + cos 3 π sin 2 b = 2 3 . sin 2 b cos 2 b + 2 1
⇒ 5 3 − 2 1 = 2 3 . sin 2 b cos 2 b ⇒ sin 2 b cos 2 b = 5 3 1
Consequently: x = 2 5 − 2 5 3 . 5 3 1 = 2 5 − 5 = 2 0
(That was a long way to prove that x = 5 0 − 3 0
Problem Loading...
Note Loading...
Set Loading...
Let X be the area of △ C D F , Y be the area of △ A D E , Z be the area of △ B E F , x be the side of the equilateral triangle, and θ be ∠ C D F .
Since A B C D is a rectangle, ∠ A D C = ∠ D C B = 9 0 ° , and since △ D E F is an equilateral triangle, ∠ E D F = ∠ D F E = 6 0 ° .
Since ∠ A D E = ∠ A D C − ∠ E D F − ∠ F D C , ∠ A D E = 9 0 ° − 6 0 ° − θ or ∠ A D E = 3 0 ° − θ .
Since the angle sum of a △ C D F is 1 8 0 ° , ∠ D F C = 1 8 0 ° − ∠ D C F − ∠ C D F = 1 8 0 ° − 9 0 ° − θ or ∠ D F C = 9 0 ° − θ .
And since ∠ B F C is a straight angle, ∠ B F E = 1 8 0 ° − ∠ C F D − ∠ D F E = 1 8 0 ° − ( 9 0 ° − θ ) − 6 0 ° or ∠ B F E = 3 0 ° + θ .
From △ C D F , C D = x cos θ and X = 2 1 x ⋅ x cos θ ⋅ sin θ or X = 4 1 x 2 sin 2 θ .
From △ A D E , A D = x cos ( 3 0 ° − θ ) and Y = 2 1 x ⋅ x cos ( 3 0 ° − θ ) ⋅ sin ( 3 0 ° − θ ) or Y = 4 1 x 2 sin 2 ( 3 0 ° − θ ) .
From △ B E F , B F = x cos ( 3 0 ° + θ ) and Z = 2 1 x ⋅ x cos ( 3 0 ° + θ ) ⋅ sin ( 3 0 ° + θ ) or Z = 4 1 x 2 sin 2 ( 3 0 ° + θ ) .
Then Z − Y
= 4 1 x 2 sin 2 ( 3 0 ° + θ ) − 4 1 x 2 sin 2 ( 3 0 ° − θ )
= 4 1 x 2 ( sin 2 ( 3 0 ° + θ ) − sin 2 ( 3 0 ° − θ ) )
= 4 1 x 2 ( sin ( 6 0 ° + 2 θ ) − sin ( 6 0 ° − 2 θ ) )
= 4 1 x 2 ⋅ 2 ⋅ 2 sin ( 6 0 ° + 2 θ ) − sin ( 6 0 ° − 2 θ )
= 4 1 x 2 ⋅ 2 ⋅ cos 6 0 ° sin 2 θ
= 4 1 x 2 sin 2 θ
= X
Therefore, if Z = 5 0 and Y = 3 0 , X = Z − Y = 5 0 − 3 0 = 2 0 .