An Inscribed Equilateral Triangle

Geometry Level 2

As shown, a rectangle ( not a square) is partitioned into four triangles: 1 equilateral and 3 right triangles. The areas of two of the right triangles are 30 and 50. Find the area x x of the remaining right triangle.

Bonus: Find the general relationship among the areas of the 3 right triangles.


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
May 23, 2018

Let X X be the area of C D F \triangle CDF , Y Y be the area of A D E \triangle ADE , Z Z be the area of B E F \triangle BEF , x x be the side of the equilateral triangle, and θ \theta be C D F \angle CDF .

Since A B C D ABCD is a rectangle, A D C = D C B = 90 ° \angle ADC = \angle DCB = 90° , and since D E F \triangle DEF is an equilateral triangle, E D F = D F E = 60 ° \angle EDF = \angle DFE = 60° .

Since A D E \angle ADE = = A D C E D F F D C \angle ADC - \angle EDF - \angle FDC , A D E \angle ADE = = 90 ° 60 ° θ 90° - 60° - \theta or A D E = 30 ° θ \angle ADE\ = 30° - \theta .

Since the angle sum of a C D F \triangle CDF is 180 ° 180° , D F C \angle DFC = = 180 ° D C F C D F 180° - \angle DCF - \angle CDF = = 180 ° 90 ° θ 180° - 90° - \theta or D F C = 90 ° θ \angle DFC = 90° - \theta .

And since B F C \angle BFC is a straight angle, B F E \angle BFE = = 180 ° C F D D F E 180° - \angle CFD - \angle DFE = = 180 ° ( 90 ° θ ) 60 ° 180° - (90° - \theta) - 60° or B F E = 30 ° + θ \angle BFE = 30° + \theta .

From C D F \triangle CDF , C D = x cos θ CD = x \cos \theta and X = 1 2 x x cos θ sin θ X = \frac{1}{2}x \cdot x \cos \theta \cdot \sin \theta or X = 1 4 x 2 sin 2 θ X = \frac{1}{4}x^2 \sin 2\theta .

From A D E \triangle ADE , A D = x cos ( 30 ° θ ) AD = x \cos (30° - \theta) and Y = 1 2 x x cos ( 30 ° θ ) sin ( 30 ° θ ) Y = \frac{1}{2}x \cdot x \cos (30° - \theta) \cdot \sin (30° - \theta) or Y = 1 4 x 2 sin 2 ( 30 ° θ ) Y = \frac{1}{4}x^2 \sin 2(30° - \theta) .

From B E F \triangle BEF , B F = x cos ( 30 ° + θ ) BF = x \cos (30° + \theta) and Z = 1 2 x x cos ( 30 ° + θ ) sin ( 30 ° + θ ) Z = \frac{1}{2}x \cdot x \cos (30° + \theta) \cdot \sin (30° + \theta) or Z = 1 4 x 2 sin 2 ( 30 ° + θ ) Z = \frac{1}{4}x^2 \sin 2(30° + \theta) .

Then Z Y Z - Y

= 1 4 x 2 sin 2 ( 30 ° + θ ) 1 4 x 2 sin 2 ( 30 ° θ ) = \frac{1}{4}x^2 \sin 2(30° + \theta) - \frac{1}{4}x^2 \sin 2(30° - \theta)

= 1 4 x 2 ( sin 2 ( 30 ° + θ ) sin 2 ( 30 ° θ ) ) = \frac{1}{4}x^2 (\sin 2(30° + \theta) - \sin 2(30° - \theta))

= 1 4 x 2 ( sin ( 60 ° + 2 θ ) sin ( 60 ° 2 θ ) ) = \frac{1}{4}x^2 (\sin (60° + 2\theta) - \sin (60° - 2\theta))

= 1 4 x 2 2 sin ( 60 ° + 2 θ ) sin ( 60 ° 2 θ ) 2 = \frac{1}{4}x^2 \cdot 2 \cdot \frac{\sin (60° + 2\theta) - \sin (60° - 2\theta)}{2}

= 1 4 x 2 2 cos 60 ° sin 2 θ = \frac{1}{4}x^2 \cdot 2 \cdot \cos 60° \sin 2\theta

= 1 4 x 2 sin 2 θ = \frac{1}{4}x^2 \sin 2\theta

= X = X

Therefore, if Z = 50 Z = 50 and Y = 30 Y = 30 , X = Z Y = 50 30 = 20 X = Z - Y = 50 - 30 = \boxed{20} .

Very good but could you add a figure?

Lu Ca - 1 year, 11 months ago

Log in to reply

Okay, I added a figure.

David Vreken - 1 year, 11 months ago
Fadi BouKaram
Aug 31, 2019

Starting with angle relationships:

At point A: a + π 3 + π 2 b = π a b = π 6 a + \frac{\pi}{3} + \frac{\pi}{2} - b = \pi \Rightarrow a-b = \frac{\pi}{6} .

Similarly, b c = π 6 a n d a c = π 3 b-c = \frac{\pi}{6} \space and \space a-c = \frac{\pi}{3} .

Now with segment lengths relationships: Let L L be the length of the side of the equilateral triangle; its area is L 2 3 4 L^2 \frac{\sqrt{3}}{4} . Let w w and h h be the rectangle's width and height, respectively, and w 1 , w 2 , h 1 , h 2 w_1, w_2, h_1, h_2 the subdivided width and height where the rectangle intersects the triangle, with: w = w 1 + w 2 a n d h = h 1 + h 2 w=w_1+w_2 \space and \space h=h_1 + h_2

Given that the three outer triangles are rectangle, we have:

w 1 = L cos a ; w 2 = L sin b ; w = L cos c ; h 1 = L sin c ; h 2 = L cos b ; h = L sin a \scriptstyle w_1 = L \cos a \space; \space w_2 = L \sin b \space; \space w=L \cos c \space ; \space h_1 = L \sin c \space ; \space h_2 = L \cos b \space; \space h=L \sin a

Surface area of A B C = w 2 h 2 / 2 = 50 L 2 sin b cos b 2 = L 2 sin 2 b 4 = 50 L 2 = 200 sin 2 b ( I ) ABC = w_2 h_2 / 2 = 50 \Rightarrow \frac{L^2 \sin b \cos b}{2} = \frac{L^2 \sin 2b}{4} = 50 \Rightarrow L^2= \frac{200}{\sin 2b} (I)

Surface area of A E F = w 1 h / 2 = 30 L 2 sin a cos a 2 = L 2 sin 2 a 4 = 30 L 2 = 120 sin 2 a ( I I ) AEF = w_1 h / 2 = 30 \Rightarrow \frac{L^2 \sin a \cos a}{2} = \frac{L^2 \sin 2a}{4} = 30 \Rightarrow L^2= \frac{120}{\sin 2a} (II)

Surface area of E D C : x = h 1 w / 2 = L 2 sin c cos c 2 = L 2 sin 2 c 4 ( I I I ) EDC: x = h_1 w/2 = \frac{L^2 \sin c \cos c}{2} = \frac{L^2 \sin 2c}{4} (III)

E q u a t i o n s ( I ) a n d ( I I I ) \scriptstyle Equations (I) \space and \space (III) \Rightarrow x = 200 sin 2 b . sin 2 c 4 = 50 sin 2 c sin 2 b x= \frac{200}{\sin 2b}.\frac{\sin 2c}{4} = 50 \frac{\sin 2c}{\sin 2b} = 50 sin ( 2 b π 3 ) sin 2 b = 50 sin 2 b . cos π 3 cos 2 b . sin π 3 sin 2 b = 25 25 3 cos 2 b sin 2 b = 50 \frac{\sin (2b - \frac{\pi}{3})}{\sin 2b} = 50 \frac{\sin 2b.\cos \frac{\pi}{3} - \cos 2b.\sin \frac{\pi}{3} }{\sin 2b} = 25 - 25\sqrt{3} \frac{\cos 2b}{\sin 2b}

E q u a t i o n s ( I ) a n d ( I I ) \scriptstyle Equations (I) \space and \space (II) \Rightarrow 200 sin 2 b = 120 sin 2 a 3 5 = sin 2 a sin 2 b sin ( π 3 + 2 b ) sin 2 b \frac{200}{\sin 2b} = \frac{120}{\sin 2a} \Rightarrow \frac{3}{5} = \frac{\sin 2a}{\sin 2b} \Rightarrow \frac{\sin (\frac{\pi}{3} + 2b)}{\sin 2b} = sin π 3 cos 2 b + cos π 3 sin 2 b sin 2 b = 3 2 . cos 2 b sin 2 b + 1 2 = \frac{\sin \frac{\pi}{3} \cos 2b + \cos \frac{\pi}{3} \sin 2b}{\sin 2b} = \frac{\sqrt{3}}{2}.\frac{\cos 2b}{\sin 2b} + \frac{1}{2}

3 5 1 2 = 3 2 . cos 2 b sin 2 b cos 2 b sin 2 b = 1 5 3 \Rightarrow \frac{3}{5} - \frac{1}{2} = \frac{\sqrt{3}}{2}.\frac{\cos 2b}{\sin 2b} \Rightarrow \frac{\cos 2b}{\sin 2b} = \frac{1}{5 \sqrt{3}}

Consequently: x = 25 25 3 . 1 5 3 = 25 5 = 20 x= 25 - 25\sqrt{3}. \frac{1}{5 \sqrt{3}} = 25 - 5 = 20

(That was a long way to prove that x = 50 30 x= 50-30

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...