An Inscribed Quadrilateral

Geometry Level 3

Quadrilateral A B C D ABCD is inscribed in a unit circle such that A B A D AB \cong AD , B C > C D BC > CD , and diagonal A C = 3 AC = \sqrt{3} . The perimeter of this quadrilateral can be expressed as P = m A D + n C D P = m \cdot AD + n \cdot CD , where m m and n n are integers. Find m + n m + n .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
May 31, 2018

Let O O be the center of the unit circle. Then A C O \triangle ACO has sides 1 1 , 1 1 , and 3 \sqrt{3} , and by the law of cosines A O C = 120 ° \angle AOC = 120° . Since an inscribed angle is half of the central angle of the same arc, A B C = 60 ° \angle ABC = 60° . Since opposite angles of a cyclic quadrilateral add up to 180 ° 180° , A D C = 120 ° \angle ADC = 120° .


Method 1:

Let x = C O D x = \angle COD . Then A O D = A O C C O D = 120 ° x \angle AOD = \angle AOC - \angle COD = 120° - x . Since A O B \angle AOB and A O D \angle AOD are central angles that intercept congruent chords, A O B = A O D = 120 ° x \angle AOB = \angle AOD = 120° - x . Since a full revolution around point O O is 360 ° 360° , B O C \angle BOC = = 360 ° A O B A O D C O D 360° - \angle AOB - \angle AOD - \angle COD = = 360 ° ( 120 ° x ) ( 120 ° x ) x 360° - (120° - x) - (120° - x) - x = = 120 ° + x 120° + x .

Since the chord length c c is related to the radius r r and central angle θ \theta by the equation c = 2 r sin θ 2 c = 2r \sin \frac{\theta}{2} , C D = 2 1 sin x 2 CD = 2 \cdot 1 \cdot \sin \frac{x}{2} = = 2 sin x 2 2 \sin \frac{x}{2} , B C = 2 1 sin 120 ° + x 2 BC = 2 \cdot 1 \cdot \sin \frac{120° + x}{2} = = 2 sin ( 60 ° + x 2 ) 2 \sin (60° + \frac{x}{2}) , and A B = A D = 2 1 sin 120 ° x 2 AB = AD = 2 \cdot 1 \cdot \sin \frac{120° - x}{2} = = 2 sin ( 60 ° x 2 ) 2 \sin (60° - \frac{x}{2}) . Notice that:

B C BC

= 2 sin ( 60 ° + x 2 ) = 2 \sin (60° + \frac{x}{2})

= 2 sin 60 ° cos x 2 + 2 cos 60 ° sin x 2 = 2 \sin 60° \cos \frac{x}{2} + 2 \cos 60° \sin \frac{x}{2}

= 2 sin 60 ° cos x 2 + sin x 2 = 2 \sin 60° \cos \frac{x}{2} + \sin \frac{x}{2}

= 2 sin 60 ° cos x 2 sin x 2 + 2 sin x 2 = 2 \sin 60° \cos \frac{x}{2} - \sin \frac{x}{2} + 2 \sin \frac{x}{2}

= 2 sin 60 ° cos x 2 2 cos 60 ° sin x 2 + 2 sin x 2 = 2 \sin 60° \cos \frac{x}{2} - 2 \cos 60° \sin \frac{x}{2} + 2 \sin \frac{x}{2}

= 2 sin ( 60 ° x 2 ) + 2 sin x 2 = 2 \sin (60° - \frac{x}{2}) + 2 \sin \frac{x}{2}

= A D + C D = AD + CD

Therefore, the perimeter is P = A B + B C + C D + A D P = AB + BC + CD + AD = = ( A D ) + ( A D + C D ) + C D + A D (AD) + (AD + CD) + CD + AD = = 3 A D + 2 C D 3 \cdot AD + 2 \cdot CD , which means m = 3 m = 3 and n = 2 n = 2 , and 3 + 2 = 5 3 + 2 = \boxed{5} .


Method 2:

Reflect A B AB and C B CB in the perpendicular bisector of diagonal A C AC , so that B C A D BC \cong AD , and A B > C D AB > CD . (As reflection preserves length, this will not change the overall perimeter of quadrilateral A B C D ABCD .)

Since A C AC and A D AD are congruent opposite sides of a cyclic quadrilateral, A B AB and C D CD are parallel. Since consecutive angles of parallel lines are supplementary, B A D = 180 ° A D C \angle BAD = 180° - \angle ADC = = 180 ° 120 ° = 60 ° 180° - 120° = 60° . Similarly, B C D = 180 ° A B C \angle BCD = 180° - \angle ABC = = 180 ° 60 ° = 120 ° 180° - 60° = 120° . Therefore, quadrilateral A B C D ABCD is an isosceles trapezoid.

Let E E be the intersection of A B AB and a perpendicular from C C , and F F be the intersection of A B AB and a perpendicular from D D . Since A B AB and C D CD are parallel, C D F E CDFE is a rectangle, and E F = C D EF = CD . From B C E \triangle BCE , B E = B C cos 60 ° = 1 2 B C = 1 2 A D BE = BC \cos 60° = \frac{1}{2}BC = \frac{1}{2}AD , and from A D F \triangle ADF , A F = A D cos 60 ° = 1 2 A D AF = AD \cos 60° = \frac{1}{2}AD . Therefore, A B = B E + E F + A F AB = BE + EF + AF = = 1 2 A D + C D + 1 2 A D \frac{1}{2}AD + CD + \frac{1}{2}AD = = A D + C D AD + CD .

Therefore, the perimeter is P = A B + B C + C D + A D P = AB + BC + CD + AD = = ( A D + C D ) + ( A D ) + C D + A D (AD + CD) + (AD) + CD + AD = = 3 A D + 2 C D 3 \cdot AD + 2 \cdot CD , which means m = 3 m = 3 and n = 2 n = 2 , and 3 + 2 = 5 3 + 2 = \boxed{5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...