An inspiration

Which of the following is greater? A = 202 303 B = 303 202 \large A = {\color{#D61F06}202}^{\color{#20A900}303} \quad \quad \quad \quad B = {\color{#20A900}303} ^{\color{#D61F06}202}

A = B A=B B > A B > A A > B A > B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 20, 2017

Consider:

A B = 20 2 303 30 3 202 = 2 303 × 10 1 303 3 202 × 10 1 202 = 8 101 × 10 1 101 9 101 = ( 808 9 ) 101 > 1 \dfrac AB = \dfrac {202^{303}}{303^{202}} = \dfrac {2^{303}\times 101^{303}}{3^{202}\times 101^{202}} = \dfrac {8^{101}\times 101^{101}}{9^{101}} = \left(\dfrac {808}9 \right)^{101} > 1

A > B \implies \boxed{A>B}

Naren Bhandari
Aug 20, 2017

A = 20 2 303 = ( 2 101 ) 303 = ( 2 ) 303 ( 101 ) 303 A = \small202^{303} = (2*101)^{303} = (2)^{303}*(101)^{303}

B = 30 3 202 = ( 3 101 ) 202 = 3 202 ( 101 ) 202 B = \small303^{202} = (3*101)^{202} = 3^{202} *(101)^{202} A B = ( 2 303 3 202 ) ( 101 101 ) 303 202 = ( 8 × 101 9 ) 101 = ( 808 9 ) 101 > 1 \small\frac{A}{B} = \left(\frac{2^{303}}{3^{202}}\right)*\left(\frac{101}{101}\right)^{303-202} = \left(\frac{8×101}{9}\right)^{101} = \left(\frac{808}{9}\right)^{101} > 1 Hence, A > B \boxed{A>B}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...