An Integral Limit

Calculus Level 5

lim n 0 1 n ( e x ( 1 + x n ) n ) d x = ? \lim_{n \to \infty} \int_{0}^{1} n\left(e^x-\left(1+\dfrac{x}{n}\right)^n\right) \mathrm{d}x = \ ?


The answer is 0.359.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Dec 18, 2014

Integrating the expression we have got the limit as :

L = lim n n ( ( e 1 ) ( ( 1 + 1 n ) n n n + 1 ) ) L=\lim _{ n\rightarrow \infty }{ \quad n((e-1)-({ (1+\frac { 1 }{ n } ) }^{ n }-\frac { n }{ n+1 } )) }

Simplifying the expression a bit we get :

L = lim n n ( ( e ( 1 + 1 n ) n ) n n + 1 L=\lim _{ n\rightarrow \infty }{ \quad n((e-{ (1+\frac { 1 }{ n } ) }^{ n }) } -\frac { n }{ n+1 }

Put x = 1 n x=\frac{1}{n} to get the limit as :

L = lim x 0 + ( e ( 1 + x ) 1 x ) x 1 x + 1 \displaystyle L=\lim _{ x\rightarrow 0^{ + } }{ \quad \frac { (e-{ (1+x) }^{ \frac { 1 }{ x } }) }{ x } } -\frac { 1 }{ x+1 }

L = ( lim x 0 + ( e e l n ( 1 + x ) x ) x ) 1 \displaystyle L=(\lim _{ x\rightarrow 0^{ + } }{ \quad \frac { (e\quad -\quad { e }^{ \frac { ln(1+x) }{ x } }) }{ x } }) -1

Note the given limit is of 0 0 \frac{0}{0} indeterminate form

Applying L-Hopital's rule we get :

L = lim x 0 + ( e l n ( 1 + x ) x ) ( l n ( 1 + x ) x x + 1 ) 1 1 \displaystyle L=\lim _{ x\rightarrow 0^{ + } }{ \quad \frac { ({ e }^{ \frac { ln(1+x) }{ x } })(ln(1+x)-\frac { x }{ x+1 } ) }{ 1 } } -1

L = ( lim x 0 + e l n ( 1 + x ) x ) ( lim x 0 + ( l n ( 1 + x ) x 1 + x ) ) 1 \displaystyle L=(\lim _{ x\rightarrow 0^{ + } }{ { e }^{ \frac { ln(1+x) }{ x } }\quad ) } (\lim _{ x\rightarrow 0^{ + } }{ (ln(1+x)-\frac { x }{ 1+x } ) } )-1

The first limit equals to e e and for second limit applying L-Hopital's rule once again we get.

L = e . lim x 0 + ( 1 2 ( 1 + x ) 2 ) 1 \displaystyle L=e.\lim _{ x\rightarrow 0^{ + } }{ (\frac { 1 }{ 2{ (1+x) }^{ 2 } } ) } -1

Finally we get :

L = e 2 1 L=\Large \frac { e }{ 2 } -1

@Ronak Agarwal Use \left(...\right) for ( x 2 x ) \left(\dfrac{x^2}x\right) (Long and big brackets)

Kishore S. Shenoy - 5 years, 7 months ago

Nice solution

without applying LH,

e ( e l o g ( 1 + x ) x 1 1 x ) - e(\dfrac{ e^{\dfrac{log(1 + x)}{x} - 1} - 1}{x})

e ( e l o g ( 1 + x ) x 1 1 l o g ( 1 + x ) x 1 ) . l o g ( 1 + x ) x x 2 - e(\dfrac{ e^{\dfrac{log(1 + x)}{x} - 1} - 1}{\dfrac{log(1 + x)}{x} - 1}). \dfrac{log(1 + x) - x}{x^{2}}

l i m x 0 e ( e l o g ( 1 + x ) x 1 1 l o g ( 1 + x ) x 1 ) . l i m x 0 l o g ( 1 + x ) x x 2 lim_{x \to 0} - e(\dfrac{ e^{\dfrac{log(1 + x)}{x} - 1} - 1}{\dfrac{log(1 + x)}{x} - 1}). lim_{x \to 0}\dfrac{log(1 + x) - x}{x^{2}}

Thus,

l i m x 0 l o g ( 1 + x ) x x 2 = ( x x 2 2 + x 3 3 . . . . . ) x x 2 lim_{x \to 0}\dfrac{log(1 + x) - x}{x^{2}} = \dfrac{(x - \dfrac{x^{2}}{2} + \dfrac{x^{3}}{3} - .....) - x}{x^{2}}

= e 2 = \dfrac{e}{2}


a question to ask - What really e \huge{e} is?

U Z - 6 years, 5 months ago

Log in to reply

What do you mean @Megh Choksi

e e is euler's constant.

Ronak Agarwal - 6 years, 5 months ago

Nice! I was just about to finish my solution too, but it seems like that won't be needed. Also, it's better to enclose important equations in \[ rather than in \(

Jake Lai - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...