An integral limit!

Calculus Level 5

( lim n Z n 0 π / 2 ( sin ( x ) + cos ( x ) ) n + 1 d x 0 π / 2 ( sin ( x ) + cos ( x ) ) n d x ) 2 = ? \displaystyle {\left(\lim_{\stackrel{n\rightarrow \infty}{n \in \mathbb{Z}}} \frac{\displaystyle \int_{0}^{\pi/2}{\left(\sin(x) + \cos(x)\right)^{n+1}\ dx}}{\displaystyle \int_{0}^{\pi/2}{\left(\sin(x) + \cos(x)\right)^n\ dx}}\right)}^2 = \, ?

This is a limit of sequences


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kartik Sharma
Feb 25, 2017

I n + 1 = 0 π / 2 ( sin ( x ) + cos ( x ) ) n + 1 d x \displaystyle I_{n+1} = \int_{0}^{\pi/2}{{\left(\sin(x) + \cos(x)\right)}^{n+1} \ dx}

I n + 1 = 0 π / 2 ( sin ( x ) + cos ( x ) ) n ( sin ( x ) + cos ( x ) ) d x \displaystyle I_{n+1} = \int_{0}^{\pi/2}{{\left(\sin(x) + \cos(x)\right)}^n (\sin(x) + \cos(x)) \ dx}

I n + 1 = ( cos ( x ) + sin ( x ) ) ( sin ( x ) + cos ( x ) ) n ] 0 π / 2 + n 0 π / 2 ( cos ( x ) sin ( x ) ) 2 ( cos ( x ) + sin ( x ) ) n 1 d x \displaystyle I_{n+1} = \left. (-\cos(x) + \sin(x))(\sin(x) + \cos(x))^n \right]_{0}^{\pi/2} + n \int_{0}^{\pi/2}{(\cos(x) -\sin(x))^2 (\cos(x) + \sin(x))^{n-1} \ dx}

I n + 1 = 2 + n 0 π / 2 ( 2 ( sin ( x ) + cos ( x ) ) 2 ) ( sin ( x ) + cos ( x ) ) n 1 d x \displaystyle I_{n+1} = 2 + n \int_{0}^{\pi/2}{\left(2 - (\sin(x) + \cos(x))^2\right)(\sin(x) + \cos(x))^{n-1} \ dx}

I n + 1 = 2 n I n + 1 + 2 n I n 1 \displaystyle I_{n+1} = 2 - n I_{n+1} + 2 n I_{n-1}

I n + 1 = 2 n + 1 + 2 n 1 n I n 2 \displaystyle I_{n+1} = \frac{2}{n+1} + 2\frac{n-1}{n} I_{n-2}

In other words I n = 2 n + 2 2 n 1 n ( n 2 ) + 2 3 ( n 1 ) ( n 3 ) n ( n 2 ) ( n 4 ) + I_n = \frac{2}{n} + 2^2\frac{n-1}{n(n-2)} + 2^3 \frac{(n-1)(n-3)}{n(n-2)(n-4)} + \cdots

Let L = lim n I n + 1 I n L = \lim_{n\rightarrow \infty} \frac{I_{n+1}}{I_n} ,

Then,

L = lim n 2 n I n + 2 ( 1 ) 1 L \displaystyle L = \lim_{n\rightarrow \infty} \frac{2}{n I_n} + 2 (1) \frac{1}{L}

lim n 2 n I n = lim n 2 n ( 2 n + 2 2 n 1 n ( n 2 ) + 2 3 ( n 1 ) ( n 3 ) n ( n 2 ) ( n 4 ) + ) = lim n 2 ( 2 1 + 2 2 n 1 ( n 2 ) + 2 3 ( n 1 ) ( n 3 ) ( n 2 ) ( n 4 ) + ) = lim n 2 = 0 \displaystyle \lim_{n\rightarrow \infty} \frac{2}{n I_n} = \lim_{n\rightarrow \infty} \frac{2}{n\left(\frac{2}{n} + 2^2\frac{n-1}{n(n-2)} + 2^3 \frac{(n-1)(n-3)}{n(n-2)(n-4)} + \cdots\right)} = \lim_{n\rightarrow \infty} \frac{2}{\left(\frac{2}{1} + 2^2\frac{n-1}{(n-2)} + 2^3 \frac{(n-1)(n-3)}{(n-2)(n-4)} + \cdots\right)} = \lim_{n\rightarrow \infty} \frac{2}{\rightarrow \infty} = 0

L = 0 + 2 L \displaystyle L = 0 + \frac{2}{L}

L = 2 \displaystyle \boxed{L = \sqrt{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...