An integral misses tangent

Calculus Level 4

0 π 2 sin 2 x 3 + 2 sin x + 2 cos x d x = arctan 1 k \large \int_{0}^{\frac{\pi}{2}}\frac{ \sin^2x}{3+2 \sin x+2 \cos x} dx = \arctan \frac{1}{k}

Find the value of k k satisfying the equation above.


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Raymond Chan
Jul 14, 2018

Let I = 0 π 2 sin 2 x 3 + 2 sin x + 2 cos x d x I=\int_0^{\frac{\pi}{2}}\frac{\sin ^2x}{3+2\sin x+2\cos x}dx and x = π 2 u x=\frac{\pi}{2}-u I = π 2 0 sin 2 ( π 2 u ) 3 + 2 sin ( π 2 u ) + 2 cos ( π 2 u ) ( d u ) = 0 π 2 cos 2 u 3 + 2 cos u + 2 sin u d u = 0 π 2 cos 2 x 3 + 2 sin x + 2 cos x d x I=\int_{\frac{\pi}{2}}^0\frac{\sin ^2(\frac{\pi}{2}-u)}{3+2\sin (\frac{\pi}{2}-u)+2\cos (\frac{\pi}{2}-u)}(-du)=\int_0^{\frac{\pi}{2}}\frac{\cos ^2u}{3+2\cos u+2\sin u}du=\int_0^{\frac{\pi}{2}}\frac{\cos ^2x}{3+2\sin x+2\cos x}dx 2 I = 0 π 2 sin 2 x 3 + 2 sin x + 2 cos x d x + 0 π 2 cos 2 x 3 + 2 sin x + 2 cos x d x = 0 π 2 sin 2 x + cos 2 x 3 + 2 sin x + 2 cos x d x = 0 π 2 1 3 + 2 sin x + 2 cos x d x 2I=\int_0^{\frac{\pi}{2}}\frac{\sin ^2x}{3+2\sin x+2\cos x}dx+\int_0^{\frac{\pi}{2}}\frac{\cos ^2x}{3+2\sin x+2\cos x}dx=\int_0^{\frac{\pi}{2}}\frac{\sin ^2x+\cos ^2x}{3+2\sin x+2\cos x}dx=\int_0^{\frac{\pi}{2}}\frac{1}{3+2\sin x+2\cos x}dx Now let t = tan x 2 t=\tan{\frac{x}{2}} , d x = 2 d t 1 + t 2 dx=\frac{2dt}{1+t^2} , sin x = 2 t 1 + t 2 \sin x=\frac{2t}{1+t^2} , cos x = 1 t 2 1 + t 2 \cos x=\frac{1-t^2}{1+t^2} 2 I = 0 1 1 3 + 2 ( 2 t 1 + t 2 ) + 2 ( 1 t 2 1 + t 2 ) ( 2 d t 1 + t 2 ) 2I=\int_0^1\frac{1}{3+2(\frac{2t}{1+t^2})+2(\frac{1-t^2}{1+t^2})}(\frac{2dt}{1+t^2}) I = 0 1 1 3 ( 1 + t 2 ) + 4 t + 2 ( 1 t 2 ) d t = 0 1 1 t 2 + 4 t + 5 d t = 0 1 1 ( t + 2 ) 2 + 1 d t I=\int_0^1\frac{1}{3(1+t^2)+4t+2(1-t^2)}dt=\int_0^1\frac{1}{t^2+4t+5}dt=\int_0^1\frac{1}{(t+2)^2+1}dt Let t + 2 = tan θ t+2=\tan \theta , d t = sec 2 θ d θ dt=\sec ^2\theta \, d\theta I = tan 1 2 tan 1 3 sec 2 θ d θ tan 2 θ + 1 = tan 1 2 tan 1 3 1 d θ I=\int_{\tan ^{-1}2}^{\tan ^{-1}3}\frac{\sec ^2\theta \, d\theta}{\tan ^2\theta +1}=\int_{\tan ^{-1}2}^{\tan ^{-1}3}1\, d\theta I = tan 1 3 tan 1 2 = tan 1 ( tan ( tan 1 3 tan 1 2 ) ) = tan 1 tan ( tan 1 3 ) tan ( tan 1 2 ) 1 + ( tan ( tan 1 3 ) ) ( tan ( tan 1 2 ) ) = tan 1 3 2 1 + ( 3 ) ( 2 ) I=\tan ^{-1}3-\tan ^{-1}2=\tan ^{-1}(\tan({\tan ^{-1}3-\tan ^{-1}2}))=\tan ^{-1}\frac{\tan (\tan ^{-1}3)-\tan (\tan ^{-1}2)}{1+(\tan (\tan ^{-1}3))(\tan (\tan ^{-1}2))}=\tan ^{-1}\frac{3-2}{1+(3)(2)} Therefore, I = tan 1 1 k = tan 1 1 7 I=\tan ^{-1}\frac{1}{k}=\tan ^{-1}\frac{1}{7} So k = 7 k=\boxed{7}

Chew-Seong Cheong
Jul 16, 2018

I = 0 π 2 sin 2 x 3 + 2 sin x + 2 cos x d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π 2 ( sin 2 x 3 + 2 sin x + 2 cos x + sin 2 ( π 2 x ) 3 + 2 sin ( π 2 x ) + 2 cos ( π 2 x ) ) d x = 1 2 0 π 2 ( sin 2 x 3 + 2 sin x + 2 cos x + cos 2 x 3 + 2 cos x + 2 sin x ) d x = 1 2 0 π 2 1 3 + 2 sin x + 2 cos x d x Let t = tan x 2 d t = 1 2 sec 2 x 2 d x = 1 2 0 1 1 3 + 4 t 1 + t 2 + 2 2 t 2 1 + t 2 × 2 1 + t 2 d t sin x = 2 t 1 + t 2 cos x = 1 t 2 1 + t 2 = 0 1 1 t 2 + 4 t + 5 d t = 0 1 1 ( t + 2 ) 2 + 1 d t = arctan ( t + 2 ) 0 1 = arctan 3 arctan 2 = arctan ( 3 2 1 + 3 2 ) = arctan 1 7 \begin{aligned} I & = \int_0^\frac \pi 2 \frac {\sin^2 x}{3+2\sin x+2\cos x} dx & \small \color{#3D99F6} \text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(\frac {\sin^2 x}{3+2\sin x+2\cos x}+\frac {\sin^2 \left(\frac \pi 2- x\right)}{3+2\sin \left(\frac \pi 2- x\right)+2\cos \left(\frac \pi 2- x\right)}\right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \left(\frac {\sin^2 x}{3+2\sin x+2\cos x}+\frac {\cos^2 x}{3+2\cos x + 2\sin x}\right) dx \\ & = \frac 12 \int_0^\frac \pi 2 \frac 1{3+2\sin x+2\cos x} dx & \small \color{#3D99F6} \text{Let }t = \tan \frac x2 \implies dt = \frac 12 \sec^2 \frac x2 \ dx \\ & = \frac 12 \int_0^1 \frac 1{3+\frac {4t}{1+t^2}+\frac {2-2t^2}{1+t^2}} \times \frac 2{1+t^2} dt & \small \color{#3D99F6} \implies \sin x = \frac {2t}{1+t^2} \implies \cos x = \frac {1-t^2}{1+t^2} \\ & = \int_0^1 \frac 1{t^2+4t+5} dt \\ & = \int_0^1 \frac 1{(t+2)^2+1} dt \\ & = \arctan (t+2) \bigg|_0^1 \\ & = \arctan 3 - \arctan 2 \\ & = \arctan \left(\frac {3-2}{1+3\cdot 2}\right) \\ & = \arctan \frac 17 \end{aligned}

Therefore, k = 7 k = \boxed 7 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...