An integral with cosine and exponential

Calculus Level 3

0 t cos ( 6 t ) e t d t = ? \int_0^\infty t\cos(6t)e^{-t}\,\mathrm dt=\ ?

34 1369 \dfrac{34}{1369} 34 1369 -\dfrac{34}{1369} 35 1369 \dfrac{35}{1369} 35 1369 -\dfrac{35}{1369}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Note that L { cos ( 6 t ) } = s s 2 + 36 \mathcal{L}\{\cos(6t)\}=\dfrac{s}{s^2+36} . Therefore, L { t cos ( 6 t ) } = d d s ( s s 2 + 36 ) = s 2 36 ( s 2 + 36 ) 2 \mathcal{L}\{t\cos(6t)\}=-\dfrac{\mathrm d}{\mathrm ds}\left(\dfrac{s}{s^2+36}\right)=\dfrac{s^2-36}{(s^2+36)^2} . Here, s = 1 s=1 . So, 0 t cos ( 6 t ) e t d t = 1 36 3 7 2 = 35 1369 \displaystyle\int_0^\infty t\cos(6t)e^{-t}\mathrm dt=\dfrac{1-36}{37^2}=\dfrac{-35}{1369} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...