An Integration Problem

Calculus Level 5

0 x 5 ( x + 1 ) 7 ln 2 ( x + 1 ) d x = p q \int_0^\infty \frac {x^5}{(x+1)^7} \ln^2(x+1) dx=\frac {p}{q}

where, p p and q q are positive coprime integers, Find p q p-q .

Bonus: Find 0 x n ( x + 1 ) n + a ln k ( x + 1 ) d x \displaystyle \int_0^\infty \frac {x^n}{(x+1)^{n+a}} \ln^k(x+1) dx .


The answer is 2689.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 20, 2018

0 x 5 ( x + 1 ) 7 ln 2 ( x + 1 ) d x = d 2 d a 2 0 x 5 ( x + 1 ) 6 + a d x a = 1 = d 2 d a 2 B ( 6 , a ) a = 1 = Γ ( 6 ) Γ ( a ) Γ ( 6 + a ) [ ( ψ ( a ) ψ ( 6 + a ) ) 2 + ( ψ ( a ) ψ ( 6 + a ) ) ] a = 1 = 1 6 [ ( ψ 1 ) ψ ( 7 ) ) 2 + ( ψ ( 1 ) ψ ( 7 ) ) ] = 13489 10800 \begin{aligned} \int_0^\infty \frac{x^5}{(x+1)^7} \ln^2(x+1)\,dx & = \; \frac{d^2}{da^2} \int_0^\infty \frac{x^5}{(x+1)^{6+a}}\,dx \Big|_{a=1} \; = \; \frac{d^2}{da^2} B(6,a)\Big|_{a=1} \\ & = \; \frac{\Gamma(6)\Gamma(a)}{\Gamma(6+a)}\big[(\psi(a) - \psi(6+a))^2 + (\psi'(a) - \psi'(6+a))\big] \Big|_{a=1} \; = \; \frac{1}{6}\big[(\psi1)-\psi(7))^2 + (\psi'(1) - \psi'(7))\big] \\ & = \; \frac{13489}{10800} \end{aligned} making the answer 13489 10800 = 2689 13489 - 10800 = \boxed{2689} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...