An integration reunion

Calculus Level 5

1 3 5000 x 2 ( x 2 4 x + 5 ) 3 d x \large \int^{\sqrt{3}}_1\frac{5000}{x^2(x^2-4x+5)^3}\ dx

If the integral above can be expressed in the form of

A B + C D E + F π G + H ln ( J + K L E ) \frac{A}{B}+\frac{C}{D\sqrt{E}}+\frac{F\pi}{G}+H\ln\left(J+\frac{K}{L}\sqrt{E}\right)

where A A , B B , C C , D D , E E , F F , G G , H H , J J , K K , and L L are positive integers such that gcd ( A , B ) = \gcd(A,B)= gcd ( C , D ) = \gcd(C,D)= gcd ( F , G ) = \gcd(F,G)= gcd ( K , L ) = 1 \gcd(K,L)=1 and E E is not divisible by square of any prime.

Calculate A + B + C + D + E + F + G + H + J + K + L A+B+C+D+E+F+G+H+J+K+L .


The answer is 2300.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 14, 2018

Since the integrand of 1 3 5000 x 2 ( x 2 4 x + 5 ) 3 d x = P ( x ) Q ( x ) \displaystyle \int_1^{\sqrt 3} \frac {5000}{x^2(x^2-4x+5)^3} dx = \frac {P(x)}{Q(x)} is of the form of perfect fraction where denominator has repeated roots, Ostrogradsky's method applies. Then the solution is of the form:

P ( x ) Q ( x ) d x = P 1 ( x ) Q 1 ( x ) + P 2 ( x ) Q 2 ( x ) d x \int \frac {P(x)}{Q(x)} dx = \frac {P_1(x)}{Q_1(x)} + \int \frac {P_2(x)}{Q_2(x)} dx

where Q ( x ) = x 2 ( x 2 4 x + 5 ) 3 Q(x) =x^2(x^2-4x+5)^3 , Q ( x ) = 2 x ( x 2 4 x + 5 ) 3 + 3 x 2 ( 2 x 4 ) ( x 2 4 x + 5 ) 2 Q'(x) = 2x(x^2-4x+5)^3 + 3x^2(2x-4)(x^2-4x+5)^2 , the greatest common divisor of Q ( x ) Q(x) and Q ( x ) Q'(x) is Q 1 ( x ) = x ( x 2 4 x + 5 ) 2 Q_1(x) = x(x^2-4x+5)^2 and Q 2 ( x ) = Q ( x ) Q 1 ( x ) = x ( x 2 4 x + 5 ) Q_2(x) = \dfrac {Q(x)}{Q_1(x)} = x(x^2-4x+5) . Let P 1 ( x ) = A x 4 + B x 3 + C x 2 + D x + E P_1(x) = Ax^4+Bx^3+Cx^2+Dx+E , one degree less than Q 1 ( x ) Q_1(x) , and P 2 ( x ) = F x 2 + G x + H P_2(x) = Fx^2 + Gx + H , one degree less than Q 2 ( x ) Q_2(x) . Then we have:

5000 x 2 ( x 2 4 x + 5 ) 3 d x = A x 4 + B x 3 + C x 2 + D x + E x ( x 2 4 x + 5 ) 2 + F x 2 + G x + H x ( x 2 4 x + 5 ) d x \int \frac {5000}{x^2(x^2-4x+5)^3} dx = \frac {Ax^4+Bx^3+Cx^2+Dx+E}{x(x^2-4x+5)^2} + \int \frac {Fx^2+Gx+H}{x(x^2-4x+5)} dx

Differentiate both sides with respect to x x and rearrange.

5000 x 2 ( x 2 4 x + 5 ) 3 = ( 4 A x 3 + 3 B x 2 + 2 C x + D ) x ( x 2 4 x + 5 ) 2 ( A x 4 + B x 3 + C x 2 + D x + E ) ( 5 x 4 32 x 3 + 78 x 2 80 x + 25 ) x 2 ( x 2 4 x + 5 ) 4 + F x 2 + G x + H x ( x 2 4 x + 5 ) 5000 ( x 2 4 x + 5 ) = ( 4 A x 3 + 3 B x 2 + 2 C x + D ) x ( x 2 4 x + 5 ) 2 ( A x 4 + B x 3 + C x 2 + D x + E ) ( 5 x 4 32 x 3 + 78 x 2 80 x + 25 ) + ( F x 2 + G x + H ) x ( x 2 4 x + 5 ) 3 \begin{aligned} \frac {5000}{x^2(x^2-4x+5)^3} & = \frac {(4Ax^3+3Bx^2+2Cx+D)x(x^2-4x+5)^2-(Ax^4+Bx^3+Cx^2+Dx+E)(5x^4-32x^3+78x^2-80x+25)}{x^2(x^2-4x+5)^4} + \frac {Fx^2+Gx+H}{x(x^2-4x+5)} \\ 5000(x^2-4x+5) & = (4Ax^3+3Bx^2+2Cx+D)x(x^2-4x+5)^2-(Ax^4+Bx^3+Cx^2+Dx+E)(5x^4-32x^3+78x^2-80x+25)+ (Fx^2+Gx+H)x(x^2-4x+5)^3 \end{aligned}

By equating coefficients (see note below): We have

0 3 5000 x 2 ( x 2 4 x + 5 ) 3 d x = 405 x 4 2190 x 3 + 4255 x 2 2150 x 1000 x ( x 2 4 x + 5 ) 2 0 3 + 0 3 405 x + 480 x ( x 2 4 x + 5 ) d x \begin{aligned} \int_0^{\sqrt 3} \frac {5000}{x^2(x^2-4x+5)^3} dx & = \frac {405x^4-2190x^3+4255x^2-2150x-1000}{x(x^2-4x+5)^2} \bigg|_0^{\sqrt 3} + \int_0^{\sqrt 3} \frac {405x+480}{x(x^2-4x+5)} dx \end{aligned}

  • Equating the coefficients of x 0 x^0 25 E = 25000 E = 1000 \implies - 25 E = 25000 \implies E = -1000
  • Equating the coefficients of x 9 x^9 F = 0 \implies F = 0
  • Equating the coefficients of x 8 x^8 A + G = 0 A = G \implies -A+G = 0 \implies A=G

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...