If the integral above can be expressed in the form of
where , , , , , , , , , , and are positive integers such that and is not divisible by square of any prime.
Calculate .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Since the integrand of ∫ 1 3 x 2 ( x 2 − 4 x + 5 ) 3 5 0 0 0 d x = Q ( x ) P ( x ) is of the form of perfect fraction where denominator has repeated roots, Ostrogradsky's method applies. Then the solution is of the form:
∫ Q ( x ) P ( x ) d x = Q 1 ( x ) P 1 ( x ) + ∫ Q 2 ( x ) P 2 ( x ) d x
where Q ( x ) = x 2 ( x 2 − 4 x + 5 ) 3 , Q ′ ( x ) = 2 x ( x 2 − 4 x + 5 ) 3 + 3 x 2 ( 2 x − 4 ) ( x 2 − 4 x + 5 ) 2 , the greatest common divisor of Q ( x ) and Q ′ ( x ) is Q 1 ( x ) = x ( x 2 − 4 x + 5 ) 2 and Q 2 ( x ) = Q 1 ( x ) Q ( x ) = x ( x 2 − 4 x + 5 ) . Let P 1 ( x ) = A x 4 + B x 3 + C x 2 + D x + E , one degree less than Q 1 ( x ) , and P 2 ( x ) = F x 2 + G x + H , one degree less than Q 2 ( x ) . Then we have:
∫ x 2 ( x 2 − 4 x + 5 ) 3 5 0 0 0 d x = x ( x 2 − 4 x + 5 ) 2 A x 4 + B x 3 + C x 2 + D x + E + ∫ x ( x 2 − 4 x + 5 ) F x 2 + G x + H d x
Differentiate both sides with respect to x and rearrange.
x 2 ( x 2 − 4 x + 5 ) 3 5 0 0 0 5 0 0 0 ( x 2 − 4 x + 5 ) = x 2 ( x 2 − 4 x + 5 ) 4 ( 4 A x 3 + 3 B x 2 + 2 C x + D ) x ( x 2 − 4 x + 5 ) 2 − ( A x 4 + B x 3 + C x 2 + D x + E ) ( 5 x 4 − 3 2 x 3 + 7 8 x 2 − 8 0 x + 2 5 ) + x ( x 2 − 4 x + 5 ) F x 2 + G x + H = ( 4 A x 3 + 3 B x 2 + 2 C x + D ) x ( x 2 − 4 x + 5 ) 2 − ( A x 4 + B x 3 + C x 2 + D x + E ) ( 5 x 4 − 3 2 x 3 + 7 8 x 2 − 8 0 x + 2 5 ) + ( F x 2 + G x + H ) x ( x 2 − 4 x + 5 ) 3
By equating coefficients (see note below): We have
∫ 0 3 x 2 ( x 2 − 4 x + 5 ) 3 5 0 0 0 d x = x ( x 2 − 4 x + 5 ) 2 4 0 5 x 4 − 2 1 9 0 x 3 + 4 2 5 5 x 2 − 2 1 5 0 x − 1 0 0 0 ∣ ∣ ∣ ∣ 0 3 + ∫ 0 3 x ( x 2 − 4 x + 5 ) 4 0 5 x + 4 8 0 d x