n = 0 ∑ ∞ 2 3 n ( n 2 n + 1 ) ( 2 n + ( − 1 ) n ) = β n = 0 ∑ ∞ 2 3 n ( n 2 n + 1 ) ( 2 n − ( − 1 ) n )
The equation above holds true for real β . Find 2 β 4 − 4 β 3 − 6 β + 8 β .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Before solving the given series we set F ( x ) = n ≥ 0 ∑ ( n 2 n + 1 ) x n , ∣ x ∣ < 4 1 and the generating function for F ( x ) is given by F ( x ) = n ≥ 0 ∑ ( n 2 n + 1 ) x n = ( 1 − 4 x ) ( 1 + 1 − 4 x ) 2 = 2 x 1 − 4 x 1 − 2 x 1 ⋯ ( 1 ) now set x = − 8 1 in equation 1 gives us F ( − 8 − 1 n ≥ 0 ∑ ( n 2 n + 1 ) ( − 8 1 ) n = 4 − 4 3 2 Now further differentiating equation 1 with respect to x and then multiply by x x F ′ ( x ) = 1 − 4 x 1 − 4 x D [ x − 1 ] − D [ 1 − 4 x ] x − 1 + 2 x 2 1 = 2 x 1 + ( 1 − 4 x ) 3 1 − 2 x 1 − 4 x 1 now setting x = 8 1 in equation 1 gives us F ′ ( 8 − 1 ) = n ≥ 0 ∑ 8 n n ( n 2 n + 1 ) = n ≥ 0 ∑ 2 3 n n ( n 2 n + 1 ) = 4 + 2 2 − 4 2 = 4 − 2 2 and hence β = 2 x F ′ ( 8 − 1 ) − F ( − 8 − 1 ) 2 x F ′ ( 8 − 1 ) + F ( − 8 − 1 ) = 2 ( 4 − 2 2 ) − 4 + 4 3 2 2 ( 4 − 2 2 ) + 4 − 4 3 2 = 2 1 ( 1 + 3 + 6 ) Now we will show that B = 2 β 4 − 4 β 3 − 6 β 2 + 8 β = 1 Now using multinomial theorem we can deduce that 2 β 4 = 2 6 + 1 8 2 + 1 1 3 + 8 6 4 β 3 = 1 4 + 9 2 + 1 2 3 + 9 6 6 β 2 = 1 5 + 9 2 + 3 3 + 3 6 8 β = 4 + 4 3 + 4 6 and hence B = 2 6 − 1 5 − 1 4 + 4 = 3 0 − 2 9 = 1