An interesting Binomial sums ends with a quartic equation.

Calculus Level pending

n = 0 ( 2 n + 1 n ) 2 3 n ( 2 n + ( 1 ) n ) = β n = 0 ( 2 n + 1 n ) 2 3 n ( 2 n ( 1 ) n ) \sum_{n=0}^\infty \frac {\binom {2n+1}n}{2^{3n}} \left(\sqrt 2n + (-1)^n\right) = \beta \sum_{n=0}^\infty \frac {\binom {2n+1}n}{2^{3n}} \left(\sqrt 2n - (-1)^n\right)

The equation above holds true for real β \beta . Find 2 β 4 4 β 3 6 β + 8 β 2\beta^4- 4\beta^3 - 6\beta + 8\beta .

3 1 2 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
May 1, 2020

Before solving the given series we set F ( x ) = n 0 ( 2 n + 1 n ) x n , x < 1 4 F(x)=\sum_{n\geq 0} {2n+1\choose n}x^n,\; |x|<\frac{1}{4} and the generating function for F ( x ) F(x) is given by F ( x ) = n 0 ( 2 n + 1 n ) x n = 2 ( 1 4 x ) ( 1 + 1 4 x ) = 1 2 x 1 4 x 1 2 x ( 1 ) \begin{aligned} F(x)\ = \sum_{n\geq 0}{ 2n+1\choose n}x^n\ =\frac{2}{\sqrt{(1-4x)(1+\sqrt{1-4x})}}=\frac{1}{2x\sqrt{1-4x}}-\frac{1}{2 x}\cdots(1)\end{aligned} now set x = 1 8 x=-\frac{1}{8} in equation 1 gives us F ( 8 1 F(-8^{-1} n 0 ( 2 n + 1 n ) ( 1 8 ) n = 4 4 2 3 \sum_{n\geq 0}{2n+1\choose n} \left(-\frac{1}{8}\right)^n=4-4\sqrt{\frac{2}{3}} Now further differentiating equation 1 with respect to x x and then multiply by x x x F ( x ) = 1 4 x D [ x 1 ] D [ 1 4 x ] x 1 1 4 x + 1 2 x 2 = 1 2 x + 1 ( 1 4 x ) 3 1 2 x 1 4 x xF'(x)=\frac{\sqrt{1-4x} D[x^{-1}]-D[\sqrt{1-4x} ]x^{-1}}{1-4x} +\frac{1}{2x^2}\\=\frac{1}{2x}+\frac{1}{\sqrt{(1-4x)^3}}-\frac{1}{2x\sqrt{1-4x}} now setting x = 1 8 x=\frac{1}{8} in equation 1 gives us F ( 8 1 ) = n 0 n 8 n ( 2 n + 1 n ) = n 0 n 2 3 n ( 2 n + 1 n ) = 4 + 2 2 4 2 = 4 2 2 F'(8^{-1})=\sum_{n\geq 0}\frac{n}{8^n}{2n+1\choose n}=\sum_{n\geq 0}\frac{n}{2^{3n}}{ 2n+1\choose n}\\=4+2\sqrt 2-4\sqrt 2=4-2\sqrt2 and hence β = 2 x F ( 8 1 ) + F ( 8 1 ) 2 x F ( 8 1 ) F ( 8 1 ) = 2 ( 4 2 2 ) + 4 4 2 3 2 ( 4 2 2 ) 4 + 4 2 3 = 1 2 ( 1 + 3 + 6 ) \beta = \frac{\sqrt 2 xF'(8^{-1} )+F(-8^{-1})}{\sqrt 2 xF'(8^{-1} )-F(-8^{-1})}=\frac{\sqrt2(4-2\sqrt 2)+4-4\sqrt{\frac{2}{3}}}{\sqrt2(4-2\sqrt 2)-4+4\sqrt{\frac{2}{3}}}=\frac{1}{2}\left(1+\sqrt{3}+\sqrt{6}\right) Now we will show that B = 2 β 4 4 β 3 6 β 2 + 8 β = 1 B=2\beta^4-4\beta^3-6\beta^2+8\beta=1 Now using multinomial theorem we can deduce that 2 β 4 = 26 + 18 2 + 11 3 + 8 6 4 β 3 = 14 + 9 2 + 12 3 + 9 6 6 β 2 = 15 + 9 2 + 3 3 + 3 6 8 β = 4 + 4 3 + 4 6 \begin{aligned}2\beta^4\ = 26+18\sqrt 2 + 11\sqrt 3 + 8\sqrt 6 \\ 4\beta^3 =14+9\sqrt 2 +12\sqrt 3 +9\sqrt 6\\ 6\beta^2=15+9\sqrt 2 +3\sqrt 3 +3\sqrt 6\\ 8\beta = 4+4\sqrt 3+4\sqrt 6\end{aligned} and hence B = 26 15 14 + 4 = 30 29 = 1 B= 26-15-14+4=30-29=1

Very well done Narendra.

Srinivasa Raghava - 1 year, 1 month ago

Log in to reply

Thank you sir .

Naren Bhandari - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...