∫ 1 e ln ( x ) + 2 1 ( ln ( x ) + 3 1 ( ln ( x ) + 4 1 ( ln ( x ) + 5 1 ( ⋯ ) ) ) ) d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I = ∫ 1 e ( ln ( x ) + 2 1 ( x ) + 6 1 ln ( x ) + 2 4 1 ln ( x ) + ⋯ ) d x I = ∫ 1 e ⎝ ⎛ ln ( x ) + ln ( x ) 2 1 + ln ( x ) 6 1 + ln ( x ) 2 4 1 + ⋯ ⎠ ⎞ d x a 1 ln ( x ) = ln ( x ) a 1 I = ∫ 1 e ln ( x . x 2 1 . x 6 1 . x 2 4 1 . ⋯ ) d x c c c c ln ( a ) + ln ( b ) = ln ( a b ) I = ∫ 1 e ⎝ ⎛ ln ( x ) 1 + 2 1 + 6 1 + 2 4 1 + ⋯ ⎠ ⎞ d x I = ∫ 1 e ( ln ( x ) e − 1 ) ⟹ ( e − 1 ) ∫ 1 e ln ( x ) d x
Now using Integration by parts and setting the upper and lower limit we find as I = ( e − 1 ) ( e ln ( e ) − ( ln ( 1 ) − 1 ) = e − 1
Well, isn't it a 1 l n ( x ) = l n ( x ) a 1 ?
Log in to reply
I see ! I didn't notice the typo. Thanks I have fixed it now. :)
Define f n ( x ) = ln x + 2 1 ( ln x + 3 1 ( ln x + ⋯ + n 1 ln x ) ⋯ ) . Notice that
f n ( x ) = ln x + 2 1 ( ln x + 3 1 ( ln x + ⋯ + n 1 ln x ) ⋯ ) = ln x + 2 1 ( ln x + 3 1 ( ln x + ⋯ + n − 1 1 ( ln x + n 1 ln x ) ) ⋯ ) = ln x + 2 1 ( ln x + 3 1 ( ln x + ⋯ + n − 1 1 ln x ) ⋯ ) + n ! 1 ln x = f n − 1 ( x ) + n ! 1 ln x .
Since f 1 ( x ) = ln x , a quick induction gives us f n ( x ) = ( 1 + 2 ! 1 + 3 ! 1 + ⋯ + n ! 1 ) ln x . Thus,
∫ 1 e ( ln x + 2 1 ( ln x + 3 1 ( ln x + ⋯ ) ⋯ ) ) d x = ∫ 1 e n → ∞ lim f n ( x ) d x = ∫ 1 e n → ∞ lim [ ( 1 + 2 ! 1 + 3 ! 1 + ⋯ + n ! 1 ) ln x ] d x = ∫ 1 e ( e − 1 ) ln x d x = ( e − 1 ) [ x ln x − x ] 1 e = ( e − 1 ) ( ( e ln e − e ) − ( 1 ln 1 − 1 ) ) = e − 1 .
If you're anything like me and have no idea what you're doing, obtain bounds on the integral and use those to conveniently eliminate all choices except the correct one. ln x < ln x + 2 1 ( ln x + 3 1 ( ln x + ⋯ ) ) < ln x + 2 1 ( ln x + 2 1 ( ln x + ⋯ ) ) ⇒ ln x < ln x + 2 1 ( ln x + 3 1 ( ln x + ⋯ ) ) < 2 ln x
Integrating ln x from 1 to e yields 1 and integrating 2 ln x yields 2 . Looking at the choices, we have e = 2 . 7 1 ⋯ , e + 1 = 3 . 7 1 ⋯ , 1 / e < 1 . Of course, the only possible answer to choose from, then, is e − 1 .
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Euler's number
∫ 1 e ln ( x ) + 2 1 ( ln ( x ) + 3 1 ( ln ( x ) + 4 1 ( ln ( x ) + 5 1 ( . . . ) ) ) ) d x = ∫ 1 e ln ( x ) + 2 1 ln ( x ) + 6 1 ln ( x ) + 2 4 1 ln ( x ) . . . d x = ∫ 1 e ln ( x ) ( 1 + 2 1 + 6 1 + 2 4 1 . . . ) d x = ∫ 1 e ln ( x ) × ( 1 ! 1 + 2 ! 1 + 3 ! 1 + 4 ! 1 . . . ) d x
for the next step we must know that ∑ n = 0 ∞ n ! 1 = e
euler's number
so if 0 ! 1 + 1 ! 1 + 2 ! 1 + 3 ! 1 + 4 ! 1 . . . = e . then 1 ! 1 + 2 ! 1 + 3 ! 1 + 4 ! 1 . . . = e − 1
∫ 1 e ln ( x ) × ( 1 ! 1 + 2 ! 1 + 3 ! 1 + 4 ! 1 . . . ) d x = ∫ 1 e ln ( x ) ( e − 1 ) d x = ( e − 1 ) ∫ 1 e ln ( x ) d x = ( e − 1 ) [ x ln ( x ) − x ] 1 e = ( e − 1 ) [ ( e ln e − e ) − ( ln 1 − 1 ) ] = ( e − 1 ) ≈ 1 . 7