An interesting definite integral

Calculus Level 2

1 e ln ( x ) + 1 2 ( ln ( x ) + 1 3 ( ln ( x ) + 1 4 ( ln ( x ) + 1 5 ( ) ) ) ) d x = ? \int_{1}^{e}\ln (x)+\frac{1}{2}\left ( \ln (x)+\frac{1}{3}\Big ( \ln (x)+\tfrac{1}{4}\big( \ln (x)+\tfrac{1}{5} {\small(\cdots)}\, \big) \Big ) \right )\, dx = \, ?

1 e \frac{1}{e} e 1 e-1 e e e + 1 e+1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Relevant wiki: Euler's number

1 e ln ( x ) + 1 2 ( ln ( x ) + 1 3 ( ln ( x ) + 1 4 ( ln ( x ) + 1 5 ( . . . ) ) ) ) d x \int_{1}^{e}\ln (x)+\frac{1}{2}\left ( \ln (x)+\frac{1}{3}\left ( \ln (x)+\frac{1}{4}\left ( \ln (x)+\frac{1}{5}\left ( ... \right ) \right ) \right ) \right )dx = 1 e ln ( x ) + 1 2 ln ( x ) + 1 6 ln ( x ) + 1 24 ln ( x ) . . . d x \int_{1}^{e}\ln (x)+\frac{1}{2} \ln (x)+\frac{1}{6} \ln (x)+\frac{1}{24} \ln (x)...dx = 1 e ln ( x ) ( 1 + 1 2 + 1 6 + 1 24 . . . ) d x \int_{1}^{e}\ln (x) \left ( 1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}... \right )dx = 1 e ln ( x ) × ( 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! . . . ) d x \int_{1}^{e}\ln (x)\times \left ( \frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}... \right )dx

for the next step we must know that n = 0 1 n ! = e \sum_{n=0}^{\infty } \frac{1}{n!}=e

euler's number

so if 1 0 ! + 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! . . . = e \frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}...=e . then 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! . . . = e 1 \frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}...=e-1

1 e ln ( x ) × ( 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! . . . ) d x \int_{1}^{e}\ln (x)\times \left ( \frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}... \right )dx = 1 e ln ( x ) ( e 1 ) d x \int_{1}^{e}\ln (x) \left ( e-1 \right )dx = ( e 1 ) 1 e ln ( x ) d x \left ( e-1 \right )\int_{1}^{e}\ln (x)dx = ( e 1 ) [ x ln ( x ) x ] 1 e (e-1)\left [ x\ln (x)-x \right ]_{1}^{e} = ( e 1 ) [ ( e ln e e ) ( ln 1 1 ) ] (e-1)\left [ (e\ln e-e)-(\ln 1-1) \right ] = ( e 1 ) 1.7 (e-1)\approx 1.7

Naren Bhandari
Mar 26, 2018

I = 1 e ( ln ( x ) + 1 2 ( x ) + 1 6 ln ( x ) + 1 24 ln ( x ) + ) d x I = 1 e ( ln ( x ) + ln ( x ) 1 2 + ln ( x ) 1 6 + ln ( x ) 1 24 + ) d x 1 a ln ( x ) = ln ( x ) 1 a I = 1 e ln ( x . x 1 2 . x 1 6 . x 1 24 . ) d x c c c c ln ( a ) + ln ( b ) = ln ( a b ) I = 1 e ( ln ( x ) 1 + 1 2 + 1 6 + 1 24 + ) d x I = 1 e ( ln ( x ) e 1 ) ( e 1 ) 1 e ln ( x ) d x \begin{aligned} & I = \displaystyle\int_{1}^{e} \left(\ln(x) +\dfrac{1}{2}(x) + \dfrac{1}{6}\ln(x) + \dfrac{1}{24}\ln(x) + \cdots \right)dx \\& I= \displaystyle\int_{1}^{e} \left(\ln(x) + \ln(x)^{\dfrac{1}{2}}+ \ln(x)^{\dfrac{1}{6}} + \ln(x)^{\dfrac{1}{24}}+\cdots \right)dx\qquad {\color{#3D99F6}\dfrac{1}{a}\ln(x)= \ln(x)^{\dfrac{1}{a}}} \\& I =\displaystyle\int_{1}^{e} \ln(x.x^{\frac{1}{2}}.x^{\frac{1}{6}}.x^{\frac{1}{24}}.\cdots)dx \phantom{cccc} {\color{#3D99F6} \ln(a)+\ln(b) = \ln(ab)} \\& I = \displaystyle\int_{1}^{e} \left(\ln(x)^{1+\dfrac{1}{2}+\dfrac{1}{6} + \dfrac{1}{24}+\cdots}\right) dx\\& I = \displaystyle\int_{1}^{e}\left(\ln(x)^{e-1}\right)\implies (e-1) \int_{1}^{e}\ln(x) dx \end{aligned}

Now using Integration by parts and setting the upper and lower limit we find as I = ( e 1 ) ( e ln ( e ) ( ln ( 1 ) 1 ) = e 1 \begin{aligned} & I = (e-1)\displaystyle(e\ln(e) -(\ln(1)-1) = \boxed {e-1}\end{aligned}

Well, isn't it 1 a l n ( x ) = l n ( x ) 1 a \frac{1}{a}ln(x)=ln(x)^{\frac{1}{a}} ?

Kelvin Hong - 3 years, 2 months ago

Log in to reply

I see ! I didn't notice the typo. Thanks I have fixed it now. :)

Naren Bhandari - 3 years, 2 months ago
Steven Yuan
Mar 25, 2018

Define f n ( x ) = ln x + 1 2 ( ln x + 1 3 ( ln x + + 1 n ln x ) ) . f_n(x) = \ln x + \dfrac{1}{2} \left ( \ln x + \dfrac{1}{3} \left ( \ln x + \cdots + \dfrac{1}{n} \ln x \right ) \cdots \right ). Notice that

f n ( x ) = ln x + 1 2 ( ln x + 1 3 ( ln x + + 1 n ln x ) ) = ln x + 1 2 ( ln x + 1 3 ( ln x + + 1 n 1 ( ln x + 1 n ln x ) ) ) = ln x + 1 2 ( ln x + 1 3 ( ln x + + 1 n 1 ln x ) ) + 1 n ! ln x = f n 1 ( x ) + 1 n ! ln x . \begin{aligned} f_n(x) &= \ln x + \dfrac{1}{2} \left ( \ln x + \dfrac{1}{3} \left ( \ln x + \cdots + \dfrac{1}{n} \ln x \right ) \cdots \right ) \\ &= \ln x + \dfrac{1}{2} \left ( \ln x + \dfrac{1}{3} \left ( \ln x + \cdots + \dfrac{1}{n - 1} \left ( \ln x + \dfrac{1}{n} \ln x \right ) \right ) \cdots \right ) \\ &= \ln x + \dfrac{1}{2} \left ( \ln x + \dfrac{1}{3} \left ( \ln x + \cdots + \dfrac{1}{n - 1} \ln x \right ) \cdots \right ) + \dfrac{1}{n!} \ln x \\ &= f_{n - 1}(x) + \dfrac{1}{n!} \ln x. \end{aligned}

Since f 1 ( x ) = ln x , f_1(x) = \ln x, a quick induction gives us f n ( x ) = ( 1 + 1 2 ! + 1 3 ! + + 1 n ! ) ln x . f_n(x) = \left ( 1 + \dfrac{1}{2!} + \dfrac{1}{3!} + \cdots + \dfrac{1}{n!} \right ) \ln x. Thus,

1 e ( ln x + 1 2 ( ln x + 1 3 ( ln x + ) ) ) d x = 1 e lim n f n ( x ) d x = 1 e lim n [ ( 1 + 1 2 ! + 1 3 ! + + 1 n ! ) ln x ] d x = 1 e ( e 1 ) ln x d x = ( e 1 ) [ x ln x x ] 1 e = ( e 1 ) ( ( e ln e e ) ( 1 ln 1 1 ) ) = e 1 . \begin{aligned} \int_1^e \left ( \ln x + \dfrac{1}{2} \left ( \ln x + \dfrac{1}{3} ( \ln x + \cdots ) \cdots \right ) \right ) \, dx &= \int_1^e \lim_{n \rightarrow \infty} f_n(x) \, dx \\ &= \int_1^e \lim_{n \rightarrow \infty} \left [ \left ( 1 + \dfrac{1}{2!} + \dfrac{1}{3!} + \cdots + \dfrac{1}{n!} \right ) \ln x \right ] \, dx \\ &= \int_1^e (e - 1) \ln x \, dx \\ &= (e - 1) [x \ln x - x]_1^e \\ &= (e - 1)((e \ln e - e) - (1 \ln 1 - 1)) \\ &= \boxed{e - 1}. \end{aligned}

Parth Kohli
Mar 31, 2018

If you're anything like me and have no idea what you're doing, obtain bounds on the integral and use those to conveniently eliminate all choices except the correct one. ln x < ln x + 1 2 ( ln x + 1 3 ( ln x + ) ) < ln x + 1 2 ( ln x + 1 2 ( ln x + ) ) \ln x < \ln x + \frac{1}{2} \left(\ln x + \frac{1}{3} \left( \ln x + \cdots\right)\right) < \ln x + \frac{1}{2} \left(\ln x + \frac{1}{2} \left( \ln x + \cdots\right)\right) ln x < ln x + 1 2 ( ln x + 1 3 ( ln x + ) ) < 2 ln x \Rightarrow \ln x < \ln x + \frac{1}{2} \left(\ln x + \frac{1}{3} \left( \ln x + \cdots\right)\right) < 2 \ln x

Integrating ln x \ln x from 1 to e e yields 1 1 and integrating 2 ln x 2 \ln x yields 2 2 . Looking at the choices, we have e = 2.71 e = 2.71\cdots , e + 1 = 3.71 e + 1 = 3.71 \cdots , 1 / e < 1 1/e < 1 . Of course, the only possible answer to choose from, then, is e 1 \boxed{e - 1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...