( x + 1 ) p ( x − 3 ) q = x n + a 1 x n − 1 + a 2 x n − 2 + ⋯ + a n Consider the expansion above where a 1 , a 2 , ⋯ , a n , p and q are integers with p and q positive and n = p + q . How many ordered pairs ( p , q ) with 1 ≤ p , q < 1 0 0 0 are there such that a 1 = a 2 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great job.
For a complete characterization of solutions to ( p − 3 q ) 2 = 3 ( p + q ) , you should also explain which values of m will lead to an integer solution. The list that you create suggests that the answer is dependent on m ( m o d 3 ) .
Nice job, I kept missing the largest case :(. The following made finding all the cases a lot easier. If you complete the square such that the linear term only contains one variable, the cases can be combined very nicely: ( p − 3 q ) 2 = 3 ( p + q ) = 3 ( p − 3 q ) + 1 2 q ⇒ X 2 : = ( 2 p − 6 q − 3 ) 2 = 4 8 q + 9 ∣ ⋅ 4 , + 9 We notice X 2 is non-zero and dividsible by 3 , so we can set X = 3 m > 0 : ± 3 m 9 m 2 = 2 p − 6 q − 3 = 4 8 q + 9 } q = 1 6 3 ( m 2 − 1 ) , p 1 , 2 = 2 3 ( 2 q + 1 ∓ m ) , m > 0 Checking quadratic residues m o d 1 6 , we only get integer solutions for q if we choose m = 8 k ± 1 . Let's list them until p , q > 1 0 0 0 : m = 8 k − 1 7 1 5 2 3 3 1 3 9 4 7 p 1 1 8 1 0 5 2 6 4 4 9 5 7 9 8 1 1 7 3 p 2 3 9 1 5 0 3 3 3 5 8 8 9 1 5 1 3 1 4 q 9 4 2 9 9 1 8 0 2 8 5 4 1 4 m = 8 k + 1 9 1 7 2 5 3 3 4 1 p 1 3 3 1 3 8 3 1 5 5 6 4 8 8 5 p 2 6 0 1 8 9 3 9 0 6 6 3 1 0 0 8 q 1 5 5 4 1 1 7 2 0 4 3 1 5 Excluding the pairs with p > 1 0 0 0 , we have 1 9 distinct solutions!
/* maxima code to find all solutions */
result(m) := [
3 / 16 * (3*m^2 - 8*m + 5), /* p1 */
3 / 16 * (3*m^2 + 8*m + 5), /* p2 */
3 / 16 * (m^2-1) /* q */
]$
for m : 2 thru 47 do (
if mod(m^2 - 1, 16) = 0 then disp(m, result(m))
)$
Problem Loading...
Note Loading...
Set Loading...
By Vieta's formulas, we have:
a 1 a 2 a 1 ⇒ p − 3 q 2 p − 6 q 0 ⇒ ( p − 3 q ) 2 = − [ ( − 1 ) p + ( 3 ) q ] = p − 3 q = ( p 2 ) ( − 1 ) ( − 1 ) + p q ( − 1 ) ( 3 ) + ( p 2 ) ( 3 ) ( 3 ) = 2 p ( p − 1 ) − 3 p q + 2 9 q ( q − 1 ) = a 2 = 2 p ( p − 1 ) − 3 p q + 2 9 q ( q − 1 ) = p 2 − p − 6 p q + 9 p 2 − 9 q = p 2 − 6 p q + 9 p 2 − 3 p − 3 q = 3 ( p + q )
For integer p and q , ( p − 3 q ) 2 = 3 ( 3 m 2 ) , where m is a positive integer.
⇒ { p − 3 q = ± 3 m p + q = 3 m 2 . . . ( 1 ) . . . ( 2 ) ⇒ ⎩ ⎪ ⎨ ⎪ ⎧ ( 2 ) − ( 1 ) : ( 2 ) : q = 4 3 m ( m ± 1 ) p = 4 3 m ( 3 m ∓ 1 )
The ordered pairs of ( p , q ) are as follows:
m 3 4 5 7 8 9 1 1 1 2 1 3 1 5 1 6 1 7 1 9 2 0 p = 4 3 m ( 3 m − 1 ) 1 8 3 3 1 0 5 1 3 8 2 6 4 3 1 5 4 9 5 5 6 4 7 9 8 8 8 5 q = 4 3 m ( m + 1 ) 9 1 5 4 2 5 4 9 9 1 1 7 1 8 0 2 0 4 2 8 5 3 1 5 p = 4 3 m ( 3 m + 1 ) 3 9 6 0 1 5 0 1 8 9 3 3 3 3 9 0 5 8 8 6 6 3 9 1 5 q = 4 3 m ( m − 1 ) 9 1 5 4 2 5 4 9 9 1 1 7 1 8 0 2 0 4 2 8 5
There are 1 9 ordered pairs of ( p , q ) such that a 1 = a 2 .