Evaluate
ln ( 2 ) + k = 0 ∑ ∞ ( 4 k 2 − 1 ) ( 4 k − 1 ) ( − 1 ) k ( 8 k 2 − 6 k + 1 ) + 2 k + 1
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Cristiano Sansó , it is not necessary to mention "(answer in decimal notation with 3 significant digit)" because it is mentioned below the answer box. No one will answer in fractions, binary or hexadecimal format unless they are asked to. But you must include k = 0 ∑ ∞ .
Problem Loading...
Note Loading...
Set Loading...
First of all, we can simplify something
ln ( 2 ) + k = 0 ∑ ∞ ( 4 k 2 − 1 ) ( 4 k − 1 ) ( − 1 ) k ( 8 k 2 − 6 k + 1 ) + 2 k + 1 =
= 2 ln ( 2 ) + k = 0 ∑ ∞ ( 2 k + 1 ) ( 2 k − 1 ) ( 4 k − 1 ) 2 k + 1 + ( − 1 ) k ( 4 k − 1 ) ( 2 k − 1 ) =
= 2 ln ( 2 ) + k = 0 ∑ ∞ ( 2 k + 1 ) ( 2 k − 1 ) ( 4 k − 1 ) 2 k + 1 + k = 0 ∑ ∞ ( 2 k + 1 ) ( 2 k − 1 ) ( 4 k − 1 ) ( − 1 ) k ( 2 k − 1 ) ( 4 k − 1 ) =
= 2 ln ( 2 ) + k = 0 ∑ ∞ ( 2 k − 1 ) ( 4 k − 1 ) 1 + k = 0 ∑ ∞ ( 2 k + 1 ) ( − 1 ) k =
now, if you remember these two infinite sums
k = 0 ∑ ∞ ( 2 k + 1 ) ( − 1 ) k = 4 π
8 ( k = 1 ∑ ∞ ( 4 k − 2 ) ( 4 k − 1 ) 1 ) + 2 ln ( 2 ) = π
you can try to do something with the sum above
⇒ 2 ln ( 2 ) + k = 0 ∑ ∞ ( 2 k − 1 ) ( 4 k − 1 ) 1 + k = 0 ∑ ∞ ( 2 k + 1 ) ( − 1 ) k =
= 2 ln ( 2 ) + 2 k = 0 ∑ ∞ ( 4 k − 2 ) ( 4 k − 1 ) 1 + 4 π =
= 2 ln ( 2 ) + 2 k = 1 ∑ ∞ ( 4 k − 2 ) ( 4 k − 1 ) 1 + 2 k = 0 ∑ 0 ( 4 k − 2 ) ( 4 k − 1 ) 1 + 4 π =
= 2 ln ( 2 ) + 2 k = 1 ∑ ∞ ( 4 k − 2 ) ( 4 k − 1 ) 1 + 2 ( − 2 ) ( − 1 ) 1 + 4 π =
= 2 ln ( 2 ) + 4 π − 2 ln ( 2 ) + 1 + 4 π =
= 2 π + 1 =
= 2 . 5 7 0 7 9 6 3 2 6 7 9 4 . . .