An interesting Infinite sum

Calculus Level 3

Evaluate

ln ( 2 ) + k = 0 ( 1 ) k ( 8 k 2 6 k + 1 ) + 2 k + 1 ( 4 k 2 1 ) ( 4 k 1 ) \ln(\sqrt{2}) + \sum_{k=0}^\infty \frac{(-1)^{k}(8k^{2}-6k+1)+2k+1}{(4k^{2}-1)(4k-1)}


The answer is 2.57.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Cristiano Sansó
Apr 7, 2020

First of all, we can simplify something

ln ( 2 ) + k = 0 ( 1 ) k ( 8 k 2 6 k + 1 ) + 2 k + 1 ( 4 k 2 1 ) ( 4 k 1 ) = \ln(\sqrt{2}) + \sum_{k=0}^\infty \frac{(-1)^{k}(8k^{2}-6k+1)+2k+1}{(4k^{2}-1)(4k-1)}=

= ln ( 2 ) 2 + k = 0 2 k + 1 + ( 1 ) k ( 4 k 1 ) ( 2 k 1 ) ( 2 k + 1 ) ( 2 k 1 ) ( 4 k 1 ) = =\frac{\ln(2)}{2} + \sum_{k=0}^\infty \frac{2k+1+(-1)^{k}(4k-1)(2k-1)}{(2k+1)(2k-1)(4k-1)}=

= ln ( 2 ) 2 + k = 0 2 k + 1 ( 2 k + 1 ) ( 2 k 1 ) ( 4 k 1 ) + k = 0 ( 1 ) k ( 2 k 1 ) ( 4 k 1 ) ( 2 k + 1 ) ( 2 k 1 ) ( 4 k 1 ) = =\frac{\ln(2)}{2} + \sum_{k=0}^\infty \frac{2k+1}{(2k+1)(2k-1)(4k-1)}+\sum_{k=0}^\infty \frac{(-1)^{k}(2k-1)(4k-1)}{(2k+1)(2k-1)(4k-1)}=

= ln ( 2 ) 2 + k = 0 1 ( 2 k 1 ) ( 4 k 1 ) + k = 0 ( 1 ) k ( 2 k + 1 ) = =\frac{\ln(2)}{2} + \sum_{k=0}^\infty \frac{1}{(2k-1)(4k-1)}+\sum_{k=0}^\infty \frac{(-1)^{k}}{(2k+1)}=

now, if you remember these two infinite sums

k = 0 ( 1 ) k ( 2 k + 1 ) = π 4 \sum_{k=0}^\infty \frac{(-1)^{k}}{(2k+1)}=\frac{\pi}{4}

8 ( k = 1 1 ( 4 k 2 ) ( 4 k 1 ) ) + 2 ln ( 2 ) = π 8(\sum_{k=1}^\infty \frac{1}{(4k-2)(4k-1)})+2\ln(2)=\pi

you can try to do something with the sum above

ln ( 2 ) 2 + k = 0 1 ( 2 k 1 ) ( 4 k 1 ) + k = 0 ( 1 ) k ( 2 k + 1 ) = \Rightarrow \frac{\ln(2)}{2} + \sum_{k=0}^\infty \frac{1}{(2k-1)(4k-1)}+\sum_{k=0}^\infty \frac{(-1)^{k}}{(2k+1)}=

= ln ( 2 ) 2 + 2 k = 0 1 ( 4 k 2 ) ( 4 k 1 ) + π 4 = =\frac{\ln(2)}{2} + 2\sum_{k=0}^\infty \frac{1}{(4k-2)(4k-1)}+\frac{\pi}{4}=

= ln ( 2 ) 2 + 2 k = 1 1 ( 4 k 2 ) ( 4 k 1 ) + 2 k = 0 0 1 ( 4 k 2 ) ( 4 k 1 ) + π 4 = =\frac{\ln(2)}{2} + 2\sum_{k=1}^\infty \frac{1}{(4k-2)(4k-1)} + 2\sum_{k=0}^0 \frac{1}{(4k-2)(4k-1)} + \frac{\pi}{4}=

= ln ( 2 ) 2 + 2 k = 1 1 ( 4 k 2 ) ( 4 k 1 ) + 2 1 ( 2 ) ( 1 ) + π 4 = =\frac{\ln(2)}{2} + 2\sum_{k=1}^\infty \frac{1}{(4k-2)(4k-1)} + 2\frac{1}{(-2)(-1)} + \frac{\pi}{4}=

= ln ( 2 ) 2 + π 2 ln ( 2 ) 4 + 1 + π 4 = =\frac{\ln(2)}{2} + \frac{\pi - 2\ln(2)}{4} + 1 + \frac{\pi}{4}=

= π 2 + 1 = =\frac{\pi}{2} + 1=

= 2.570796326794... =\boxed{2.570796326794...}

@Cristiano Sansó , it is not necessary to mention "(answer in decimal notation with 3 significant digit)" because it is mentioned below the answer box. No one will answer in fractions, binary or hexadecimal format unless they are asked to. But you must include k = 0 \displaystyle \sum_{\red{k=0}}^\infty .

Chew-Seong Cheong - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...