An interesting integral

Calculus Level 2

0 ln 1 + x 11 1 + x 3 ( 1 + x 2 ) ln x d x = ? \large \int_0^\infty\frac{\ln\frac{1+x^{11}}{1+x^3}}{(1+x^2)\ln x}\, \mathrm dx = \, ?

The integral above has a closed form. Evaluate this integral and give your answer to three decimal places.


The answer is 6.283185307.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Feb 12, 2018

Relevant wiki: Integration Tricks

I = 0 ln 1 + x 11 1 + x 3 ( 1 + x 2 ) ln x d x = 0 ln ( 1 + x 11 ) ln ( 1 + x 3 ) ( 1 + x 2 ) ln x d x Using 0 f ( x ) d x = 0 f ( 1 x ) x 2 d x = 1 2 0 ( ln ( 1 + x 11 ) ln ( 1 + x 3 ) ( 1 + x 2 ) ln x + ln ( 1 + 1 x 11 ) ln ( 1 + 1 x 3 ) x 2 ( 1 + 1 x 2 ) ln 1 x ) d x = 1 2 0 ( ln ( 1 + x 11 ) ln ( 1 + x 3 ) ( 1 + x 2 ) ln x + ln ( 1 + x 11 ) ln ( 1 + x 3 ) ln x 11 + ln x 3 ( 1 + x 2 ) ( ln x ) ) d x = 1 2 0 ln x 11 ln x 3 ( 1 + x 2 ) ln x d x = 1 2 0 8 ln x ( 1 + x 2 ) ln x d x = 4 0 1 1 + x 2 d x = 4 tan 1 x 0 = 2 π 6.283 \begin{aligned} I & = \int_0^\infty \frac {\ln \frac {1+x^{11}}{1+x^3}}{\left(1+x^2\right)\ln x} dx \\ & = \int_0^\infty \frac {\ln (1+x^{11})- \ln (1+x^3)}{\left(1+x^2\right)\ln x} dx & \small \color{#3D99F6} \text{Using }\int_0^\infty f(x) \ dx = \int_0^\infty \frac {f \left(\frac 1x\right)}{x^2} dx \\ & = \frac 12 \int_0^\infty \left(\frac {\ln (1+x^{11})- \ln (1+x^3)}{\left(1+x^2\right)\ln x} + {\color{#3D99F6}\frac {\ln \left(1+\frac 1{x^{11}}\right)- \ln \left(1+\frac 1{x^3}\right)}{x^2\left(1+\frac 1 {x^2} \right)\ln \frac 1x}} \right) dx \\ & = \frac 12 \int_0^\infty \left(\frac {\ln (1+x^{11})- \ln (1+x^3)}{\left(1+x^2\right)\ln x} + \frac {\ln (1+x^{11})- \ln (1+x^3) - \ln x^{11} + \ln x^3}{\left(1+ x^2 \right)(-\ln x)} \right) dx \\ & = \frac 12 \int_0^\infty \frac {\ln x^{11}-\ln x^3}{\left(1+x^2\right)\ln x} dx = \frac 12 \int_0^\infty \frac {8\ln x}{\left(1+x^2\right)\ln x} dx = 4 \int_0^\infty \frac 1 {1+x^2}dx \\ & = 4 \tan^{-1} x \ \bigg|_0^\infty = 2 \pi \approx \boxed{6.283} \end{aligned}

Daniel Xiang
Feb 11, 2018

for a function f : R R f: \mathbb{R}\rightarrow\mathbb{R} , the integral

0 f ( x ) d x = 0 1 f ( x ) d x + 1 f ( x ) d x \displaystyle \int_0^\infty f(x)\mathrm dx = \int_0^1 f(x)\mathrm dx + \int_1^\infty f(x)\mathrm dx

and with the substitution u = 1 x \displaystyle u = \frac{1}{x} we have

1 f ( x ) d x = 0 1 1 u 2 f ( 1 u ) d u \displaystyle \int_1^\infty f(x)\mathrm dx = \int_0^1 \frac{1}{u^2}f\left(\frac{1}{u}\right)\mathrm du

(Note that u \displaystyle u is a dummy variable)

applying this, we have

0 ln 1 + x 11 1 + x 3 ( 1 + x 2 ) ln x d x = 0 1 ( ln 1 + x 11 1 + x 3 ( 1 + x 2 ) ln x ) d x + 0 1 ( ln 1 + x 11 1 + x 3 ( 1 + x 2 ) x 2 ln x 1 ) d x = 0 1 ( ln 1 + x 11 1 + x 3 ( 1 + x 2 ) ln x ln x 8 1 + x 11 1 + x 3 ( 1 + x 2 ) ln x ) d x = 0 1 ln 1 + x 11 1 + x 3 + 8 ln x ln 1 + x 11 1 + x 3 ( 1 + x 2 ) ln x d x = 8 0 1 d x 1 + x 2 = 8 [ arctan x ] 0 1 = 2 π \begin{aligned}\int_0^\infty\frac{\ln\frac{1+x^{11}}{1+x^3}}{(1+x^2)\ln x}\mathrm dx&=\int_0^1\left(\frac{\ln\frac{1+x^{11}}{1+x^3}}{(1+x^2)\ln x}\right)\mathrm dx+\int_0^1\left(\frac{\ln\frac{1+x^{-11}}{1+x^{-3}}}{(1+x^{-2})x^2\ln x^{-1}}\right)\mathrm dx\\&=\int_0^1\left(\frac{\ln\frac{1+x^{11}}{1+x^3}}{(1+x^2)\ln x}-\frac{\ln x^{-8}\frac{1+x^{11}}{1+x^{3}}}{(1+x^{2})\ln x}\right)\mathrm dx\\&=\int_0^1\frac{\ln\frac{1+x^{11}}{1+x^3}+8\ln x-\ln\frac{1+x^{11}}{1+x^3}}{(1+x^2)\ln x}\mathrm dx\\&=8\int_0^1\frac{\mathrm dx}{1+x^2}=8\bigg[\arctan x\bigg]_0^1=\boxed{2\pi}\end{aligned}

So this is approached best by U subbing? I'm still struggling with this problem. Help!!!

Laquita Jackson - 3 years, 3 months ago

Log in to reply

Yes, you can use the substitution u = 1 x \displaystyle u = \frac{1}{x} to show that

1 f ( x ) d x = 1 1 f ( 1 u ) d ( 1 u ) = 1 0 1 u 2 f ( 1 u ) d u = 0 1 1 u 2 f ( 1 u ) d u \displaystyle \int_1^\infty f(x)\mathrm dx = \int_1^{\frac{1}{\infty}} f\left( \frac{1}{u}\right) \mathrm d \left( \frac{1}{u}\right) = -\int_1^0 \frac{1}{u^2}f\left(\frac{1}{u}\right)\mathrm du = \int_0^1 \frac{1}{u^2}f\left(\frac{1}{u}\right)\mathrm du

In definite integrals the variable is only a dummy variable, so

0 1 1 u 2 f ( 1 u ) d u = 0 1 1 x 2 f ( 1 x ) d x \displaystyle \int_0^1 \frac{1}{u^2}f\left(\frac{1}{u}\right)\mathrm du = \int_0^1 \frac{1}{x^2}f\left(\frac{1}{x}\right)\mathrm dx

By 0 f ( x ) d x = 0 1 f ( x ) d x + 1 f ( x ) d x \displaystyle \int_0^\infty f(x)\mathrm dx = \int_0^1 f(x)\mathrm dx + \int_1^\infty f(x)\mathrm dx we know that

0 f ( x ) d x = 0 1 ( f ( x ) + 1 x 2 f ( 1 x ) ) d x \displaystyle \int_0^\infty f(x)\mathrm dx = \int_0^1 \left( f(x) + \frac{1}{x^2} f\left(\frac{1}{x}\right)\right) \mathrm dx

Substituding f ( x ) = ln 1 + x 11 1 + x 3 ( 1 + x 2 ) ln x \displaystyle f(x) = \frac{\ln\frac{1+x^{11}}{1+x^3}}{(1+x^2)\ln x} and you can finish the rest :)

Daniel Xiang - 3 years, 3 months ago

i struggle with motivation in solving complex integrals without backstory on how they might pertain to something someone encountered in the path towards some goal

Charlie Recchia - 3 years, 1 month ago
Swetank Sharan
Feb 22, 2018

Better to solve this by putting x=1/t and then we can solve it easily

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...