∫ 0 ∞ ( 1 + x 2 ) ln x ln 1 + x 3 1 + x 1 1 d x = ?
The integral above has a closed form. Evaluate this integral and give your answer to three decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
for a function f : R → R , the integral
∫ 0 ∞ f ( x ) d x = ∫ 0 1 f ( x ) d x + ∫ 1 ∞ f ( x ) d x
and with the substitution u = x 1 we have
∫ 1 ∞ f ( x ) d x = ∫ 0 1 u 2 1 f ( u 1 ) d u
(Note that u is a dummy variable)
applying this, we have
∫ 0 ∞ ( 1 + x 2 ) ln x ln 1 + x 3 1 + x 1 1 d x = ∫ 0 1 ( ( 1 + x 2 ) ln x ln 1 + x 3 1 + x 1 1 ) d x + ∫ 0 1 ( ( 1 + x − 2 ) x 2 ln x − 1 ln 1 + x − 3 1 + x − 1 1 ) d x = ∫ 0 1 ( ( 1 + x 2 ) ln x ln 1 + x 3 1 + x 1 1 − ( 1 + x 2 ) ln x ln x − 8 1 + x 3 1 + x 1 1 ) d x = ∫ 0 1 ( 1 + x 2 ) ln x ln 1 + x 3 1 + x 1 1 + 8 ln x − ln 1 + x 3 1 + x 1 1 d x = 8 ∫ 0 1 1 + x 2 d x = 8 [ arctan x ] 0 1 = 2 π
So this is approached best by U subbing? I'm still struggling with this problem. Help!!!
Log in to reply
Yes, you can use the substitution u = x 1 to show that
∫ 1 ∞ f ( x ) d x = ∫ 1 ∞ 1 f ( u 1 ) d ( u 1 ) = − ∫ 1 0 u 2 1 f ( u 1 ) d u = ∫ 0 1 u 2 1 f ( u 1 ) d u
In definite integrals the variable is only a dummy variable, so
∫ 0 1 u 2 1 f ( u 1 ) d u = ∫ 0 1 x 2 1 f ( x 1 ) d x
By ∫ 0 ∞ f ( x ) d x = ∫ 0 1 f ( x ) d x + ∫ 1 ∞ f ( x ) d x we know that
∫ 0 ∞ f ( x ) d x = ∫ 0 1 ( f ( x ) + x 2 1 f ( x 1 ) ) d x
Substituding f ( x ) = ( 1 + x 2 ) ln x ln 1 + x 3 1 + x 1 1 and you can finish the rest :)
i struggle with motivation in solving complex integrals without backstory on how they might pertain to something someone encountered in the path towards some goal
Better to solve this by putting x=1/t and then we can solve it easily
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Integration Tricks
I = ∫ 0 ∞ ( 1 + x 2 ) ln x ln 1 + x 3 1 + x 1 1 d x = ∫ 0 ∞ ( 1 + x 2 ) ln x ln ( 1 + x 1 1 ) − ln ( 1 + x 3 ) d x = 2 1 ∫ 0 ∞ ( ( 1 + x 2 ) ln x ln ( 1 + x 1 1 ) − ln ( 1 + x 3 ) + x 2 ( 1 + x 2 1 ) ln x 1 ln ( 1 + x 1 1 1 ) − ln ( 1 + x 3 1 ) ) d x = 2 1 ∫ 0 ∞ ( ( 1 + x 2 ) ln x ln ( 1 + x 1 1 ) − ln ( 1 + x 3 ) + ( 1 + x 2 ) ( − ln x ) ln ( 1 + x 1 1 ) − ln ( 1 + x 3 ) − ln x 1 1 + ln x 3 ) d x = 2 1 ∫ 0 ∞ ( 1 + x 2 ) ln x ln x 1 1 − ln x 3 d x = 2 1 ∫ 0 ∞ ( 1 + x 2 ) ln x 8 ln x d x = 4 ∫ 0 ∞ 1 + x 2 1 d x = 4 tan − 1 x ∣ ∣ ∣ ∣ 0 ∞ = 2 π ≈ 6 . 2 8 3 Using ∫ 0 ∞ f ( x ) d x = ∫ 0 ∞ x 2 f ( x 1 ) d x