A problem by Chan Ming Xian

Level pending

Integer a, b, c, d fulfill the condition that ( a b + c d ) 2 + ( a d b c ) 2 (ab+cd)^{2}+(ad-bc)^{2} =2009 .Find out all the possible sum values of a 2 + b 2 + c 2 + d 2 a^{2}+b^{2}+c^{2}+d^{2} Sum up all the possible values for this problem and write out the last three digits of this sum as the answer.


The answer is 394.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chan Ming Xian
Dec 26, 2013

( a b + c d ) 2 + ( a d b c ) 2 (ab+cd)^{2}+(ad-bc)^{2} = a 2 b 2 + 2 a b c d + c 2 d 2 + a 2 d 2 2 a b c d + b 2 c 2 a^{2}b^{2}+2abcd+c^{2}d^{2}+a^{2}d^{2}-2abcd+b^{2}c^{2} = a 2 ( b 2 + d 2 ) + c 2 ( b 2 + d 2 ) a^{2}(b^{2}+d^{2})+c^{2}(b^{2}+d^{2}) = ( a 2 + c 2 ) ( b 2 + d 2 ) (a^{2}+c^{2})(b^{2}+d^{2}) We know that the prime factorization of 2009 is 2009 = 7 2 × 41 7^{2} \times 41 So , ( a 2 + c 2 ) ( b 2 + d 2 ) = 7 2 × 41 (a^{2}+c^{2})(b^{2}+d^{2})=7^{2} \times 41 Say ( a 2 + c 2 ) ( b 2 + d 2 ) (a^{2}+c^{2})\leq(b^{2}+d^{2}) If ( a 2 + c 2 ) = 1 , ( b 2 + d 2 ) = 2009 (a^{2}+c^{2})=1, (b^{2}+d^{2})=2009 If ( a 2 + c 2 ) = 7 , ( b 2 + d 2 ) = 287 (a^{2}+c^{2})=7 , (b^{2}+d^{2})=287 If ( a 2 + c 2 ) = 41 , ( b 2 + d 2 ) = 49 (a^{2}+c^{2})=41, (b^{2}+d^{2})=49 . Therefore, a 2 + b 2 + c 2 + d 2 = 2010 , 294 , 90 a^{2}+b^{2}+c^{2}+d^{2}=2010 ,294, 90 . 2010 + 294 + 90 = 2394 2010+294+90=2394 The last three digits of 2394 , which is the answer is 394 \boxed{394}

a 2 + c 2 = 7 a^2 + c^2 = 7 ? I don't see how the sum of the square of any pair of integers a,c can be 7 or 287

Cigien Cgn - 7 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...