A problem by John Marvin Macaraeg

Level 3

A particle travels around the limaçon r = 3 + 2 c o s θ r=3+2cos\theta with a constant angular velocity of 2 r a d s e c 2\frac{rad}{sec} , that is, d θ d t = 2 \frac{d\theta}{dt}=2 . If r r is expressed in feet, find v v and a a at the instant when θ = 1 2 π \theta=\frac{1}{2}\pi .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Andre Bonhomme
Dec 18, 2013

Since d θ d t \frac{d\theta}{dt} is constant, we have d 2 θ d t 2 = 0 \frac{d^2\theta}{dt^2}=0 , and from the given equation d r d t = 2 sin θ d θ d t = 4 sin θ , \frac{dr}{dt}=-2\sin\theta\frac{d\theta}{dt}=-4\sin\theta, d 2 r d t 2 = 4 cos θ d θ d t = 8 cos θ . \frac{d^2r}{dt^2}=-4\cos\theta\frac{d\theta}{dt}=-8\cos\theta. Substituting in (1) and setting θ = 1 2 π \theta=\frac{1}{2}\pi , we obtain v r = 4 sin θ = 4 , v_{r}=-4\sin\theta=-4, v θ = ( 3 + 2 cos θ ) 2 = 6. v_{\theta}=(3+2\cos\theta)2=6. Hence, v = v r 2 + v θ 2 = ( 4 ) 2 + ( 6 ) 2 = 7.21 f t s e c . v=\sqrt{v_{r}^{2}+v_{\theta}^{2}}=\sqrt{(-4)^2+(6)^2}=7.21 \frac{ft}{sec}. Substituting in (4) and setting θ = 1 2 π \theta=\frac{1}{2}\pi , we obtain a r = 8 cos θ 4 ( 3 + 2 cos θ ) = 12 , a_{r}=-8\cos\theta-4(3+2\cos\theta)=-12, a θ = 4 ( 4 sin θ ) = 16. a_{\theta}=4(-4\sin\theta)=-16. Hence, a = a r 2 + a θ 2 = ( 12 ) 2 + ( 16 ) 2 = 20 f t s e c . a=\sqrt{a_{r}^{2}+a_{\theta}^{2}}=\sqrt{(-12)^2+(-16)^2}=20 \frac{ft}{sec}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...