Find the last three digits of the sum i = 1 ∑ 1 5 0 5 ( i 3 0 1 0 − i ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The summation is simply the manipulation of the sums of "shallow" diagonals in Pascal's triangle
The expression is simply F 3 0 1 1 − 1 , now we consider finding F 3 0 1 1 ( m o d 1 0 0 0 )
By Pisano Period , π ( 8 ) = 1 2
F 3 0 1 1 m o d 8 = F 3 0 1 1 m o d 1 2 m o d 8 = F 1 1 m o d 8 = 8 9 m o d 8 = 1
And (in the same article), For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. Also, it can be proven that π ( n ) ≤ 6 n , with equality if and only if n = 2 ⋅ 5 k , for k ≥ 1
So π ( 2 5 0 ) = π ( 2 × 5 3 ) = 6 ⋅ 2 5 0 = 1 5 0 0
⇒ F 3 0 1 1 m o d 2 5 0 = F 3 0 1 1 m o d 1 5 0 0 m o d 2 5 0 = F 1 1 m o d 2 5 0 = 8 9
So the possible last three digits of F 3 0 1 1 are either 8 9 , 8 9 + 2 5 0 , 8 9 + 5 0 0 , 8 9 + 7 5 0
But because F 3 0 1 1 ( m o d 8 ) = 1 , then F 3 0 1 1 ≡ 8 9 ( m o d 1 0 0 0 )
Hence, ( F 3 0 1 1 − 1 ) m o d 1 0 0 0 = 8 8
Problem Loading...
Note Loading...
Set Loading...
I tried with smaller numbers first with hope to get some pattern.
i = 0 ∑ 1 ( i 2 − i ) = 2
i = 0 ∑ 1 ( i 3 − i ) = 3
i = 0 ∑ 2 ( i 4 − i ) = 5
i = 0 ∑ 2 ( i 5 − i ) = 8
i = 0 ∑ 3 ( i 6 − i ) = 1 3
Pleasant shock to get fibonacci numbers as answers. (don't know the proof.)
Above 5 answers being F 3 , F 4 , F 5 , F 6 , F 7 respectively.
So predicted i = 0 ∑ 1 5 0 5 ( i 3 0 1 0 − i ) = F 3 0 1 1 ⇒ i = 1 ∑ 1 5 0 5 ( i 3 0 1 0 − i ) = F 3 0 1 1 − 1
On searching, got F 3 0 1 1 as
8171462471 9597865751 2856492896 3621698483 7433583353 0189695852 9783427309 5195424751 1135072102 1883373646 5656420211 4139242218 9009640546 5503647355 5062125350 7928250454 2544299881 2118369050 7647932369 4932406212 2053646388 7276755400 3457230882 2593382656 0533673155 6372981610 2926727398 5536440976 8603291121 7780167413 3799363837 4745763941 6046397414 4620863047 6861321736 2578575541 7191868544 0536401777 3929049738 4643721693 4209676460 5686277794 7796739440 5590490481 6667368549 7736402901 8286868401 4600574275 9147927356 8846049097 9781358626 3536257538 6220925688 0158636896 0584209597 6827264761 0222794912 5358763002 6115261547 6524469556 8853790570 6209825207 514702089
So answer: 0 8 8