A calculus problem by Jonathan Schirmer

Calculus Level 4

The following can be expressed as π + ln a / b c \frac{\pi+\ln{a/b}}{c} where a a and b b are coprime positive integers:

0 π 4 d x 2 + tan x \int^{\frac{\pi}{4}}_0 \frac{dx}{2+\tan{x}}

What is the value of a + b + c a+b+c ?


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jing Hao Pang
Dec 16, 2013

0 π 4 d x 2 + tan x \displaystyle\int_0^{\frac{\pi}{4}} \frac{dx}{2+\tan x}

= 0 π 4 sec 2 x d x ( sec 2 x ) ( 2 + tan x ) = \displaystyle\int_0^{\frac{\pi}{4}} \frac{\sec^2 x \; dx}{(\sec^2 x)(2+\tan x)}

The reason to choose specifically sec 2 x \sec^2 x is because of its close relation to tan x \tan x :

Let u = tan x u = \tan x

d u d x = sec 2 x d u = sec 2 x d x \bullet \frac{du}{dx} = \sec^2 x \Rightarrow du = \sec^2 x \; dx

sec 2 x = u 2 + 1 \bullet \sec^2 x= u^2 + 1

With this in mind, we can rewrite the expression to the following: 0 π 4 sec 2 x d x ( sec 2 x ) ( 2 + tan x ) = 0 π 4 d u ( u 2 + 1 ) ( u + 2 ) \displaystyle\int_0^{\frac{\pi}{4}} \frac{\sec^2 x \; dx}{(\sec^2 x)(2+\tan x)} = \displaystyle\int_0^{\frac{\pi}{4}} \frac{du}{(u^2+1)(u+2)}

Applying partial fractions:

1 ( u 2 + 1 ) ( u + 2 ) = A u + B u 2 + 1 + C u + 2 \frac{1}{(u^2+1)(u+2)} = \frac {Au+B}{u^2+1} + \frac {C}{u+2}

1 = ( A u + B ) ( u + 2 ) + C ( u 2 + 1 ) 1 = (Au+B)(u+2) + C(u^2+1)

Subbing different values of u u , we get A = 1 5 , B = 2 5 , C = 1 5 A=-\frac{1}{5}, B=\frac{2}{5}, C=\frac{1}{5}

Thus:

1 ( u 2 + 1 ) ( u + 2 ) = 2 u 5 ( u 2 + 1 ) + 1 5 ( u + 2 ) \frac{1}{(u^2+1)(u+2)} = \frac {2-u}{5(u^2+1)} + \frac {1}{5(u+2)}

0 π 4 ( 2 u 5 ( u 2 + 1 ) + 1 5 ( u + 2 ) ) d u \displaystyle\int_0^{\frac{\pi}{4}} (\frac {2-u}{5(u^2+1)} + \frac {1}{5(u+2)}) du

= 1 5 0 π 4 2 u ( u 2 + 1 ) d u + 1 5 0 π 4 1 u + 2 d u = \displaystyle\frac{1}{5} \int_0^{\frac{\pi}{4}} \frac {2-u}{(u^2+1)} du + \frac{1}{5}\int_0^{\frac{\pi}{4}} \frac {1}{u+2} du

1 5 0 π 4 2 u ( u 2 + 1 ) d u \displaystyle\frac{1}{5} \int_0^{\frac{\pi}{4}} \frac {2-u}{(u^2+1)} du

= 1 5 0 π 4 ( 2 tan x ) ( sec 2 x ) d x ( sec 2 x ) =\displaystyle\frac{1}{5} \int_0^{\frac{\pi}{4}} \frac {(2-\tan x)(\sec^2 x) \; dx}{(\sec^2 x)}

= 1 5 0 π 4 ( 2 tan x ) d x =\displaystyle\frac{1}{5} \int_0^{\frac{\pi}{4}} (2-\tan x) \; dx

= 1 5 ( 2 x + ln cos x ) 0 π 4 =\displaystyle\frac{1}{5} (2x+\ln |\cos x|)\bigg|_0^{\frac{\pi}{4}}

= π 2 + ln ( 1 2 ) 5 =\displaystyle\frac{\frac{\pi}{2} + \ln (\frac{1}{\sqrt{2}})}{5}

1 5 0 π 4 1 u + 2 d u \displaystyle\frac{1}{5}\int_0^{\frac{\pi}{4}} \frac {1}{u+2} du

= l n ( u + 2 ) 5 0 π 4 =\displaystyle\frac{ln (u+2)}{5}\Bigg|_0^{\frac{\pi}{4}}

= l n ( tan x + 2 ) 5 0 π 4 =\displaystyle\frac{ln (\tan x+2)}{5}\Bigg|_0^{\frac{\pi}{4}}

= l n 3 2 5 =\displaystyle\frac{ln \frac{3}{2}}{5}

Adding the two terms together:

π 2 + ln ( 1 2 ) 5 + l n 3 2 5 \displaystyle\frac{\frac{\pi}{2} + \ln (\frac{1}{\sqrt{2}})}{5} + \frac{ln \frac{3}{2}}{5}

= π 2 + ln ( 3 2 2 ) 5 =\displaystyle\frac{\frac{\pi}{2} + \ln (\frac{3}{2\sqrt{2}})}{5}

= π + 2 ln ( 3 2 2 ) 10 =\displaystyle\frac{\pi + 2\ln (\frac{3}{2\sqrt{2}})}{10}

= π + ln ( 9 8 ) 10 =\displaystyle\frac{\pi + \ln (\frac{9}{8})}{10}

Therefore, a + b + c = 9 + 8 + 10 = 27 a+b+c = 9+8+10 = \boxed {27}

Hi Jing! Thanks for a good solution! I would suggest in the Best of Calculus feed try reading Nicolae's post and then you'll see how magically 'less work' you could do and solve the integral!. https://brilliant.org/discussions/thread/an-interesting-trigonometric-integral/

Jit Ganguly - 7 years, 5 months ago

Log in to reply

Wow, I had a feeling that there's a shorter method ><. Thanks for the info! I'll shall input the alternative solution based on Nicolae's post here:

Let I = 0 π 4 1 2 + tan x d x \displaystyle I = \int_0^\frac{\pi}{4} \frac {1}{2+\tan x} dx

= 0 π 4 1 2 + sin x cos x d x \displaystyle = \int_0^\frac{\pi}{4} \frac {1}{2+\frac{\sin x}{\cos x}} dx

= 0 π 4 cos x sin x + 2 cos x d x \displaystyle = \int_0^\frac{\pi}{4} \frac {\cos x}{\sin x+2\cos x} dx

Let J = 0 π 4 sin x sin x + 2 cos x d x \displaystyle J = \int_0^\frac{\pi}{4} \frac {\sin x}{\sin x+2\cos x} dx

Thus,

2 I + J = 0 π 4 sin x + 2 cos x sin x + 2 cos x d x 2I + J = \displaystyle \int_0^\frac{\pi}{4} \frac {\sin x+2\cos x}{\sin x+2\cos x} dx

= 0 π 4 sin x + 2 cos x sin x + 2 cos x d x = \displaystyle \int_0^\frac{\pi}{4} \frac {\sin x+2\cos x}{\sin x+2\cos x} dx

= x 0 π 4 = \displaystyle x|_0^\frac{\pi}{4}

= π 4 =\displaystyle \frac{\pi}{4}

I 2 J = 0 π 4 cos x 2 sin x sin x + 2 cos x d x I - 2J = \displaystyle \int_0^\frac{\pi}{4} \frac {\cos x-2\sin x}{\sin x+2\cos x} dx

Since d d x sin x + 2 cos x = cos x 2 sin x \displaystyle \frac{d}{dx} \sin x + 2\cos x = \cos x - 2\sin x , the fraction is in the form of f ( x ) f ( x ) \displaystyle \frac{f'(x)}{f(x)} , the integral becomes:

I 2 J = ln sin x + 2 cos x 0 π 4 I - 2J = \displaystyle \ln|\sin x + 2\cos x|\Big |_0^\frac{\pi}{4}

= ln 3 2 ln 2 = \displaystyle \ln \frac{3}{\sqrt{2}} - \ln 2

= ln 3 2 2 = \displaystyle \ln \frac{3}{2\sqrt{2}}

Now, simply solve the simultaneous equation to get

I = π + ln ( 9 8 ) 10 \displaystyle I=\frac{\pi + \ln (\frac{9}{8})}{10}

Therefore, a + b + c = 9 + 8 + 10 = 27 \displaystyle a+b+c = 9+8+10 = \boxed{27}

Jing Hao Pang - 7 years, 5 months ago

Log in to reply

thats the same way i approached the problem!! cheers!!

G C KEERTHI Vasan - 7 years, 4 months ago

thats how i did it

Vinit Kumar - 7 years, 4 months ago

exactly as i did..

Shubham Jain - 7 years, 4 months ago

That's exactly how I did it, thanks to Nicolae. :)

Pranav Arora - 7 years, 5 months ago

why make the solutions so big and thoughtful ...... instead why cant you justtransfrom to sinx cosx form and then substitute sinx=2tanx/2 /!+tan^2x/2

arafat khan - 7 years, 5 months ago

Log in to reply

Could you further elaborate on your method? I'm open to different and more elegant solutions :)

Jing Hao Pang - 7 years, 5 months ago

We want: 0 π 4 c o s x 2 c o s x + s i n x \int_0^{\frac{\pi}{4}} \frac{cosx}{2cosx+sinx}

Let I 1 = 0 π 4 c o s x 2 c o s x + s i n x I_1 = \int_0^{\frac{\pi}{4}} \frac{cosx}{2cosx+sinx} and I 2 = 0 π 4 s i n x 2 c o s x + s i n x I_2 = \int_0^{\frac{\pi}{4}} \frac{sinx}{2cosx+sinx}

2 I 1 + I 2 = 0 π 4 d x = π 4 2I_1 + I_2 = \int_0^{\frac{\pi}{4}} dx = \frac{\pi}{4}

2 I 2 + I 1 = 0 π 4 2 s i n x + c o s x 2 c o s x + s i n x d x = l n ( 2 c o s x + s i n x ) 0 π 4 = l n 3 2 2 -2I_2 + I_1 = \int_0^{\frac{\pi}{4}} \frac{-2sinx+cosx}{2cosx+sinx} dx = ln(2cosx + sinx) |_0^{\frac{\pi}{4}} = ln \frac{3}{2\sqrt{2}}

5 I 1 = 2 π 4 + l n 3 2 2 = π + l n 9 8 2 5I_1 = 2 * \frac{\pi}{4} + ln \frac{3}{2\sqrt{2}} = \frac{\pi + ln \frac{9}{8}}{2}

0 π 4 c o s x 2 c o s x + s i n x = π + l n 9 8 10 \int_0^{\frac{\pi}{4}} \frac{cosx}{2cosx+sinx} = \frac{\pi + ln \frac{9}{8}}{10}

a + b + c = 9 + 8 + 10 = 27 a+b+c=9+8+10=27

Wonderfully done....

S Aditya - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...