A problem by Trevor B.

Level pending

If 6 x 5 y + 3 z = 14 , 6x-5y+3z=14\text{,} then the minimum value of x 2 + y 2 + z 2 x^2+y^2+z^2 is A B , \frac{A}{B}\text{,} where A A and B B are positive coprime integers. What is A + B ? A+B\text{?}


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Oct 12, 2020

Let f ( x , y , z ) = x 2 + y 2 + z 2 f(x,y,z) = x^2 + y^2 +z^2 and g ( x , y , z ) = 6 x 5 y + 3 z = 14 g(x,y,z) = 6x-5y+3z=14 . Taking Lagrange Multipliers gives:

g r a d ( f ) = λ g r a d ( g ) 2 x = 6 λ , 2 y = 5 λ , 2 z = 3 λ y = 5 x 6 , z = x 2 . grad(f) = \lambda \cdot grad(g) \Rightarrow 2x = 6\lambda, 2y = -5\lambda, 2z = 3\lambda \Rightarrow y = -\frac{5x}{6}, z = \frac{x}{2}.

or 6 x 5 ( 5 x 6 ) + 3 ( x 2 ) = 14 6x -5(-\frac{5x}{6}) +3(\frac{x}{2}) = 14 ;

or x = 6 5 , y = 1 , z = 3 5 x = \frac{6}{5}, y = -1, z = \frac{3}{5} .

The Hessian Matrix of f , F ( x , y , z ) = 2 I 3 x 3 f, F(x,y,z) = 2 \cdot I_{3x3} , is positive-definite for all x , y , z R x,y,z \in \mathbb{R} . Hence, the global minimum of f f computes to:

f ( 6 5 , 1 , 3 5 ) = 36 + 25 + 9 25 = 14 5 . f( \frac{6}{5}, -1, \frac{3}{5}) = \frac{36+25+9}{25} = \boxed{\frac{14}{5}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...