A problem by Fahim Shahriar Shakkhor

Level pending

A B C \triangle ABC is inscribed in a circle with radius 2 3 \sqrt{\frac{2}{3}} . Given that A B C = 4 5 \angle ABC = 45^\circ & A C B = 7 5 \angle ACB = 75^\circ . The perimeter of the triangle can be written as a + b + c \sqrt{a} + \sqrt{b} + c ; where a , b , c a,b,c are positive integers. Find a + b + c a+b+c .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

B A C = 6 0 \angle BAC = 60^\circ

From Sine Rule,

A B sin A C B = A C sin A B C = B C sin B A C = 2 R \frac{AB}{\sin ACB} = \frac{AC}{\sin ABC} = \frac{BC}{\sin BAC} = 2R

A B 2 R = sin A C B \frac{AB}{2R} = \sin ACB _ _ _ _ _(1)

A C 2 R = sin A B C \frac{AC}{2R} = \sin ABC _ _ _ _ _(2)

B C 2 R = sin B A C \frac{BC}{2R} = \sin BAC _ _ _ _ _(3)

Add (1),(2),(3).

A B + A C + B C 2 R = sin A B C + sin A C B + sin B A C \frac{AB + AC + BC}{2R} = \sin ABC + \sin ACB + \sin BAC

A B + A C + B C 2 R = sin 4 5 + sin ( 45 + 30 ) + sin 6 0 \frac{AB + AC + BC}{2R} = \sin 45^\circ + \sin (45+30)^\circ + \sin 60^\circ

A B + A C + B C 2 R = 1 2 + 3 + 1 2 2 + 3 2 \frac{AB + AC + BC}{2R} = \frac{1}{\sqrt{2}} + \frac{\sqrt{3}+1}{2\sqrt{2}} + \frac{\sqrt{3}}{2}

A B + A C + B C 2 2 3 = 3 ( 3 + 2 + 1 ) 2 2 \frac{AB + AC + BC}{2\sqrt{\frac{2}{3}}} = \frac{\sqrt{3}(\sqrt{3} + \sqrt{2} + 1 )}{2\sqrt{2}}

A B + B C + C A = 3 + 2 + 1 AB+BC+CA = \sqrt{3} + \sqrt{2} + 1

Hence, a + b + c = 3 + 2 + 1 = 6 a+b+c = 3 + 2 +1 =6

A problem about circumradii and "not-ugly" angles: you immediately start thinking about the extended law of sines. By the way, you need to change your status :)

Mursalin Habib - 7 years, 4 months ago

did the same way :)

Sagnik Dutta - 7 years, 4 months ago
Jubayer Nirjhor
Jan 14, 2014

The circumradius of A B C \triangle ABC is 2 3 \sqrt{\dfrac{2}{3}} . The angles are A = 6 0 \angle A =60^{\circ} , B = 4 5 \angle B = 45^{\circ} and C = 7 5 \angle C = 75^{\circ} . By the Law of Sines , we have,

B C sin 6 0 = C A sin 4 5 = A B sin 7 5 = 2 2 3 \dfrac{BC}{\sin 60^\circ} = \dfrac{CA}{\sin 45^\circ}=\dfrac{AB}{\sin 75^\circ}=2 \sqrt{\dfrac{2}{3}}

B C + C A + A B = 2 2 3 ( sin 6 0 + sin 4 5 + sin 7 5 ) = 2 2 3 ( 3 2 + 2 2 + 2 + 6 4 ) = 2 3 × 2 3 + 3 2 + 6 2 = 2 3 + 3 2 + 6 6 = 2 3 6 + 3 2 6 + 6 6 = 2 + 3 + 1 \begin{aligned} \therefore ~ BC + CA + AB &=& 2 \sqrt{\dfrac{2}{3}}\left(\sin 60^\circ + \sin 45^\circ + \sin 75^\circ\right) \\ \\ &=& 2 \sqrt{\dfrac{2}{3}}\left(\dfrac{\sqrt{3}}{2} + \dfrac{\sqrt{2}}{2} + \dfrac{\sqrt 2 + \sqrt 6}{4}\right) \\ \\ &=& \dfrac{\sqrt2}{\sqrt3}\times\dfrac{2\sqrt{3} + 3\sqrt 2 + \sqrt 6 }{2} \\ \\ &=& \dfrac{2\sqrt{3} + 3\sqrt 2 + \sqrt 6 }{\sqrt{6}} \\ \\ &=& \dfrac{2\sqrt{3}}{\sqrt{6}} + \dfrac{3\sqrt{2}}{\sqrt{6}} + \dfrac{\sqrt{6}}{\sqrt{6}} \\ \\ &=& \sqrt2 + \sqrt3 + 1 \\ \\ \end{aligned}

Implying a = 2 a=2 , b = 3 b=3 , c = 1 c=1 , giving our desired answer:

a + b + c = 2 + 3 + 1 = 6 a+b+c=2+3+1=\fbox{6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...