A problem by Arpit Sah

Level pending

If 12 divides ab313ab, then the smallest value of a+b is


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tim Vermeulen
Dec 17, 2013

12 a b 313 a b 3 a b 313 a b 3 ( a + b + 3 + 1 + 3 + a + b ) = 7 + 2 ( a + b ) 12 \mid \overline{ab313ab} \implies 3 \mid \overline{ab313ab} \implies 3 \mid (a + b + 3 + 1 + 3 + a + b) = 7 + 2(a+b) So, 7 + 2 ( a + b ) 0 ( m o d 3 ) 2 ( a + b ) 2 ( m o d 3 ) a + b 1 ( m o d 3 ) \begin{aligned} 7 + 2(a+b) &\equiv 0 \pmod{3}\\ 2(a+b) &\equiv 2 \pmod{3}\\ a+b &\equiv 1 \pmod{3} \end{aligned}

Also, 12 a b 313 a b 4 a b 313 a b 4 a b 12 \mid \overline{ab313ab} \implies 4 \mid \overline{ab313ab} \implies 4 \mid \overline{ab} If a + b = 1 a+b=1 , then there is no way that 4 a b 4 \mid \overline{ab} . If a + b = 4 a+b=4 , then a = 4 , b = 0 12 4031340 = a b 313 a b . a=4,\, b=0 \implies 12 \mid 4031340 = \overline{ab313ab}. Hence, a + b = 4 a+b=\boxed{4} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...