An algebra problem by Thomas Jacob

Algebra Level 5

{ f ( x ) = ( x 1958 + x 1957 + 2 ) 1959 = a 0 + a 1 x + . . . + a n x n A = a 0 a 1 2 a 2 2 + a 3 a 4 2 a 5 2 + a 6 . . . \begin{cases} f(x)= (x^{1958} + x^{1957} +2)^{1959} = a_0 + a_1 x +... + a_nx^{n} \\ A = a_0 -\dfrac{a_1}{2} - \dfrac{a_2}{2} + a_3 - \dfrac {a_4}{2} - \dfrac {a_5}{2} + a_6 -... \end{cases}

For A A as defined above, find 2 A + 3 2A+3 .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 13, 2016

Consider the function

f ( x ) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + . . . + a n x n f ( e 2 π 3 i ) = a 0 + a 1 e 2 π 3 i + a 2 e 4 π 3 i + a 3 e 2 π i + . . . + a n e 2 n π 3 i = a 0 + a 1 ( cos 2 π 3 + i sin 2 π 3 ) + a 2 ( cos 4 π 3 + i sin 4 π 3 ) + a 3 ( cos 2 π + i sin 2 π ) + . . . + a n ( cos 2 n π 3 + i sin 2 n π 3 ) { f ( e 2 π 3 i ) } = a 0 + a 1 cos 2 π 3 + a 2 cos 4 π 3 + a 3 cos 2 π + . . . + a n cos 2 n π 3 = a 0 a 1 2 a 2 2 + a 3 . . . + a n cos 2 n π 3 A = { f ( e 2 π 3 i ) } = { ( e 3916 π 3 i + e 3914 π 3 i + 2 ) 1959 } = { ( e 4 π 3 i + e 2 π 3 i + 2 ) 1959 } = { ( 1 2 3 2 i 1 2 + 3 2 i + 2 ) 1959 } = { ( 1 ) 1959 } = 1 \begin{aligned} f(x) & = a_0 + a_1x + a_2x^2 + a_3x^3 + ... + a_nx^n \\ f \left(e^{\frac {2\pi}3 i}\right) & = a_0 + a_1e^{\frac {2\pi}3 i} + a_2e^{\frac {4 \pi} 3 i} + a_3e^{2\pi i} + ... + a_ne^{\frac {2n \pi} 3 i} \\ & = a_0 + a_1 \left(\cos \frac {2\pi}3 + i \sin \frac {2\pi}3 \right) + a_2 \left(\cos \frac {4\pi} 3 + i \sin \frac {4\pi} 3 \right) + a_3\left(\cos 2\pi + i \sin 2\pi \right) + ... + a_n \left(\cos \frac {2n\pi} 3 + i \sin \frac {2n\pi} 3 \right) \\ \Re \left \{f \left(e^{\frac {2\pi}3 i}\right) \right \} & = a_0 + a_1 \cos \frac {2\pi}3 + a_2 \cos \frac {4\pi} 3 + a_3 \cos 2\pi + ... + a_n \cos \frac {2n\pi} 3 \\ & = a_0 - \frac {a_1}2 - \frac {a_2}2 + a_3 - ... + a_n \cos \frac {2n\pi} 3 \\ \implies A & = \Re \left \{f \left(e^{\frac {2\pi}3 i}\right) \right \} \\ & = \Re \left \{\left(e^{\frac {3916 \pi} 3 i} + e^{\frac {3914 \pi} 3 i} + 2\right)^{1959} \right \} \\ & = \Re \left \{\left(e^{\frac {4\pi} 3 i} + e^{\frac {2\pi} 3 i} + 2\right)^{1959} \right \} \\ & = \Re \left \{\left(-\frac 12 -\frac {\sqrt 3}2i -\frac 12 + \frac {\sqrt 3}2i + 2\right)^{1959} \right \} \\ & = \Re \left \{\left( 1 \right)^{1959} \right \} \\ & = 1 \end{aligned}

2 A + 3 = 5 \implies 2A+3 = \boxed{5}

I think you meant f ( e 2 π 3 i ) f( e^{ \frac{2 \pi}{3} i } )

Hosam Hajjir - 3 years, 3 months ago

Log in to reply

Thanks. And no one else noticed it. I have amended the solution.

Chew-Seong Cheong - 3 years, 3 months ago
Chuen-Wei Chen
Oct 13, 2016

2A + 3 = f(ω) + f(ω^2) +3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...