If x, y, and k are positive numbers such that ((x)/(x+y))(10) + ((y)/(x+y))(20) = k and if x < y, which of the following could be the value of k?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
(10x + 20y)/(x+y) = k
10x + 20y = kx + ky
20y - ky = kx - 10x
y(20 - k) = x(k - 10)
(20 - k)/(k - 10) = x/y
and since 0 < x < y, then 0 < x/y < 1, and it must be that 0 < (20 - k) / (k - 10) < 1. From the answer choices we can be sure k - 10 isn't negative, so we can multiply through this inequality by k-10 to find that 0 < 20 - k < k - 10, or that 15 < k < 20.