Root in root in root in root in root in root.

Algebra Level 2

Evaluate 1 + 788 1 + 789 1 + 790 1 + 791 1 + 792 1 + 793 × 795 \sqrt{1+788\sqrt{1+789 \sqrt{1+790\sqrt{1+ 791 \sqrt{ 1+792 \sqrt{1+793 \times 795}}}}}}


The answer is 789.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Morgan Dang
Dec 15, 2013

This looks messy to begin with, but, surprisingly, 1 + 793 × 795 = 793 \sqrt{1+793 \times 795} = 793 ! This is because of the following identity:

1 + ( n 1 ) ( n + 1 ) = 1 + n 2 1 = n \sqrt{1+(n-1)(n+1)} = \sqrt{1+n^2-1} = n .

This works out perfectly, because applying this recursively allows us to 'climb' the radicals by incrementing our products! So,

1 + 788 1 + 789 1 + 790 1 + 791 1 + 792 1 + 793 × 795 \sqrt{1+788\sqrt{1+789\sqrt{1+790\sqrt{1+791\sqrt{1+792\sqrt{1+793 \times 795}}}}}}

= 1 + 788 1 + 789 1 + 790 1 + 791 1 + 792 × 794 =\sqrt{1+788\sqrt{1+789\sqrt{1+790\sqrt{1+791\sqrt{1+792 \times 794}}}}}

= 1 + 788 1 + 789 1 + 790 1 + 791 × 793 =\sqrt{1+788\sqrt{1+789\sqrt{1+790\sqrt{1+791 \times 793}}}}

= 1 + 788 1 + 789 1 + 790 × 792 =\sqrt{1+788\sqrt{1+789\sqrt{1+790 \times 792}}}

= 1 + 788 1 + 789 × 791 =\sqrt{1+788\sqrt{1+789 \times 791}}

= 1 + 788 × 790 =\sqrt{1+788 \times 790}

= 789 = \boxed{789} .

think you meant 794 in the beginning

Kayalvizhi Thirumavalavan - 7 years, 5 months ago

Log in to reply

Aw heck. Yeah, I did. Thanks for pointing that out!

Morgan Dang - 7 years, 5 months ago

Log in to reply

your welcome! :D thankyou for your great explanation!

Kayalvizhi Thirumavalavan - 7 years, 5 months ago

This is an oral question.

mietantei conan - 7 years ago

EXCELLENT

FIRDOUS AHMAD - 7 years, 5 months ago

if you know square a binomial ( n + 1 ) 2 = n 2 + 2 n + 1 = n ( n + 2 ) + 1 (n+1)^2=n^2+2n+1=n(n+2)+1 for example: 5x7+1=6^2 1000x1002+1=1001^2

Pablo Cesar Herrera Ortiz - 7 years, 5 months ago

GREAT!!!!!!!!!! EXPLANATION

Bakulesh Rane - 7 years, 5 months ago

thank you so much........ you saved my day

Shuhhank Saxena - 7 years, 5 months ago

WELL DONE

Arafat Asim - 7 years, 5 months ago

your answer is understandable but i think your above mention calculation should be 794 in palace of 793...... pl. discribe it n thanks for a very suitable and correct answer...........

Gaurav Kumar - 7 years, 5 months ago

goood job

Deepak Kumar - 7 years, 5 months ago

I can't understand

Fauline ST - 6 years, 11 months ago
Hùng Minh
Dec 15, 2013

1 + 793 x 795 = 1 + 793 ^ 2 + 793 x 2 = (1 + 793)^2 1+ 792 x 794 Note that 794 - 792 = 2. So on, we have 1 + 791 x 793 ...etc. So, 1 + 788 x 790 = (1+788)^2 <=> Result is 789

U ALL CAN OBSERVE THAT WHEN U SOLVE THE INERMOST ROOT ,U WILL GET the number n+2. in above n=792 and when u solve the root u get 792*794.this way u can straight away jump to the outrmost root and with lill effort u get the answer "789".

archit tripathi - 7 years, 5 months ago

thanks a lot for the solution!

aneesh swamy - 7 years, 5 months ago
Niraj Jagtap
Dec 14, 2013

789

how to solve above mentioned evaluate? please discribe

Gaurav Kumar - 7 years, 5 months ago
Sachin Mourya
Feb 5, 2014

793x795 = (794-1)(794+1)=794^2 - 1 hence 1 + 793x795 = 1 + 794^2 - 1 = 794^2 root of( 794^2) = 794

now

792x794 = (793-1)(793+1)=793^2 - 1 hence 1 + 792x794 = 1 + 793^2 - 1 = 793^2 root of( 793^2) = 793

again

791x793 = (792-1)(792+1)=792^2 - 1 hence 1 + 791x793 = 1 + 792^2 - 1 = 792^2 root of( 792^2) = 792

again

790x792 = (791-1)(791+1)=791^2 - 1 hence 1 + 790x792 = 1 + 791^2 - 1 = 791^2 root of( 791^2) = 791

again

789x791 = (790-1)(790+1)=790^2 - 1 hence 1 + 789x791 = 1 + 790^2 - 1 = 790^2 root of( 790^2) = 790

again

788x790 = (789-1)(789+1)=789^2 - 1 hence 1 + 788x790 = 1 + 789^2 - 1 = 789^2 root of( 789^2) = 789 ANSWER !!!

793 795+1=630436/794=794 792+1=628849/793=793 791+1=627264/792=792 790+1=625681/791=791 789+1=624100/790=790 788+1=622521/789=789

Ujjayanta Bhaumik
Dec 15, 2013

793 795=(794-1) (794+1) 793*795+1=794^2-1+1=794^2 Proceeding like this answer can be obtained.

I can't understand.

Partho Kunda - 7 years, 5 months ago

789

please explain it.......

Gaurav Kumar - 7 years, 5 months ago

matlab

Lamak Ahmad - 7 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...