An interesting problem in Number Theory

Number Theory Level pending

Two different positive integers a a and b b satisfy the equation a 2 b 2 = 2018 2 a a^2 - b^2 = 2018 - 2a . What is the value of a + b a + b ?

Australian Intermediate Mathematics Olympiad 2018


The answer is 672.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

a 2 b 2 = 2018 2 a a 2 + 2 a + 1 b 2 = 2018 + 1 ( a + 1 ) 2 b 2 = 2019 ( a + b + 1 ) ( a b + 1 ) = 2019 = { 2019 × 1 673 × 3 \begin{aligned} a^2 - b^2 & = 2018 - 2a \\ a^2 +2a + 1 - b^2 & = 2018 + 1 \\ (a+1)^2 - b^2 & = 2019 \\ (a+b+1)(a-b+1) & = 2019 = \begin{cases} 2019 \times 1 \\ 673 \times 3 \end{cases} \end{aligned}

For a , b > 0 a, b > 0 , a + b + 1 > a b + 1 a+b+1 > a-b+1 , therefore

{ a + b + 1 = 2019 a + b = 2018 a b + 1 = 1 a b = 0 a = b = 1009 , unacceptable \begin{cases} a+b+1 = 2019 & \implies a+b = 2018 \\ a - b+1 = 1 & \implies a - b = 0 & \implies \red{a = b} = 1009, & \small \red{\text{unacceptable}} \end{cases}

{ a + b + 1 = 673 a + b = 672 a b + 1 = 3 a b = 2 a = 337 b = 335 , acceptable \begin{cases} a+b+1 = 673 & \implies a+b = \boxed{672} \\ a - b+1 = 3 & \implies a - b = 2 & \implies \blue{a = 337 \ne b = 335}, & \small \blue{\text{acceptable}} \end{cases}

I too did the same.

Nikola Alfredi - 10 months ago
Srinivasa Gopal
Mar 6, 2020

a^2 - b^2 = 2018- 2a

a^2 - b^2 + 2a = 2018 =

a^2 - b^2 + 1 + 2a = 2019 =

(a^2 + 2a + 1) - (b^2) =

(a + 1)*2 - (b^2) = (a+1+b)(a+1-b) = 2019

Prime factorization of 2019 = 673 * 3

As a, and b are positive integers a + b + 1 > a -b + 1

Therefore a+1+ b = 673 , follows that a + b = 672

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...