An Interesting Product

Algebra Level 4

( 1 1 4 ) ( 1 1 9 ) ( 1 1 16 ) ( 1 1 10000 ) \left( 1 - \frac14\right)\left( 1 - \frac19\right)\left( 1 - \frac1{16}\right)\cdots \left( 1 - \frac1{10000}\right)

The expression above can be expressed as a b \dfrac ab for coprime positive integers a a and b b , find the value of a + b a+b .

Bonus : Generalize this.


The answer is 301.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Note that 1 1 k 2 = k 2 1 k 2 = ( k 1 ) ( k + 1 ) k k 1 - \dfrac{1}{k^{2}} = \dfrac{k^{2} - 1}{k^{2}} = \dfrac{(k - 1)(k + 1)}{k*k} .

As a result, when we compute k = 2 n ( k 1 ) ( k + 1 ) k k \prod_{k=2}^{n} \frac{(k - 1)(k + 1)}{k*k} we will end up with a telescoping product, where all the "middle" terms will cancel leaving us with a product of a fraction at the beginning and a fraction at the end. To show how this works, consider the first 4 4 terms of this product; we have

k = 2 5 ( k 1 ) ( k + 1 ) k k = 1 3 2 2 2 4 3 3 3 5 4 4 4 6 5 5 = 1 2 6 5 = 6 10 \displaystyle\prod_{k=2}^{5} \dfrac{(k - 1)(k + 1)}{k*k} = \dfrac{1*3}{2*2} *\dfrac{2*4}{3*3} *\dfrac{3*5}{4*4} *\dfrac{4*6}{5*5} = \dfrac{1}{2}*\dfrac{6}{5} = \dfrac{6}{10} .

Notice that the final result is in the form 1 2 n + 1 n \frac{1}{2}*\frac{n+1}{n} with n = 5 n = 5 . So since the given product goes up to n = 100 n = 100 , the solution will be 1 2 101 100 = 101 200 \dfrac{1}{2} *\dfrac{101}{100} = \dfrac{101}{200} .

Thus a = 101 , b = 200 a = 101, b = 200 and a + b = 301 a + b = \boxed{301} .

Nihar Mahajan
Nov 12, 2014

(1-1/4)(1-1/9)........(1-1/10000).

=(4-1)/4 * (9-1)/9 *...........(10000-1)/10000.

=(2^2-1)/2^2 * (3^2-1)/3^2 *................... (99^2-1)/99^2 * (100^2-1)/100^2.

=(2+1)(2-1)/2^2 * (3+1)(3-1)/3^2 ..............* (99+1)(99+10)/99^2 * (100+1)(100-1)/100^2.

= 3 * 1 * 4 * 2 * 5 * 3 * 6 * 4 .......... 99 * 97 * 100 * 98 * 101 * 99 / 2^2 * 3^2 * 4^2 * .......... 99^2 * 100^2

regrouping the terms gives us-

=1 * 2 * 3^2 * 4^2 * 5^2 * ............. 99^2 * 100 * 101 / 2^2 * 3^2 * 4^2 * .......... 99^2 * 100^2

Squares from 3 to 99 get cancelled...so,

=1 * 2 * 100 * 101 / 4 * 10000

=101/200 ... where 'a'=101, 'b'=200

hence, a+b= 101+200= 301 is the answer

Same way ☺

Vinayak Verma - 5 years, 7 months ago

Exactly the same way

Shreyash Rai - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...