An interesting seven variable equation

6654321 a + 7554321 b + 7644321 c + 7653321 d + 7654221 e + 7654311 f + 7654320 g = 296754624 6654321a + 7554321b + 7644321c + 7653321d +\\ 7654221e + 7654311f + 7654320g = 296754624

Determine the sum of the elements of all possible tuples ( a , b , c , d , e , f , g ) (a,b,c,d,e,f,g) of positive integers less than 10 that satisfy the equation above.

Note that the integers do not necessarily have to be distinct.


The answer is 39.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jakub Bober
Aug 12, 2016

6654321 a + 7554321 b + 7644321 c + 7653321 d + 7654221 e + 7654311 f + 7654320 g = 6654321a+7554321b+7644321c+7653321d+7654221e+7654311f+7654320g= = 7654321 ( a + b + c + d + e + f + g ) ( 1000000 a + 100000 b + 10000 c + 1000 d + 100 e + 10 f + g ) = =7654321(a+b+c+d+e+f+g)-(1000000a+100000b+10000c+1000d+100e+10f+g)= = 296754624 7654321 ( a + b + c + d + e + f + g ) 296754624 = =296754624 \Rightarrow 7654321(a+b+c+d+e+f+g)-296754624= = ( 1000000 a + 100000 b + 10000 c + 1000 d + 100 e + 10 f + g ) =(1000000a+100000b+10000c+1000d+100e+10f+g) \leftarrow this is a 7-digit number a b c d e f g 1111111 \overline{abcdefg}\geqslant 1111111 . 7654321 38 < 296754624 7654321 \cdot 38<296754624 and 7654321 41 296754624 = 17072537 7654321 \cdot 41-296754624=17072537 has more than 7 digits, so a + b + c + d + e + f + g = 39 a+b+c+d+e+f+g=39 and ( a , b , c , d , e , f , g ) = ( 1 , 7 , 6 , 3 , 8 , 9 , 5 ) (a,b,c,d,e,f,g)=(1,7,6,3,8,9,5) (because 7654321 39 296754624 = 1763895 7654321 \cdot 39-296754624=1763895 or a + b + c + d + e + f + g = 40 a+b+c+d+e+f+g=40 and ( a , b , c , d , e , f , g ) = ( 9 , 4 , 1 , 8 , 2 , 1 , 6 ) (a,b,c,d,e,f,g)=(9,4,1,8,2,1,6) (because 7654321 40 296754624 = 9418216 7654321 \cdot 40-296754624=9418216 . The first option is correct, while the second is contradictory, hence the answer is 39 .

Rajen Kapur
Aug 5, 2016

Add a 7-digit number a b c d e f g \overline {abcdefg} to both the sides and re-write the given equation as 7654321 ( a + b + c + d + e + f + g ) = 296754624 + a b c d e f g 7654321(a+b+c+d+e+f+g)=296754624+\overline {abcdefg} . Simple calculation that gives the next multiple 7654321 ( 1 + 7 + 6 + 3 + 8 + 9 + 5 ) = 296754624 + 1763895 7654321(1+7+6+3+8+9+5) = 296754624 + 1763895 . Sum of digits is 39.

I like your solution, but I think you should point out why you added [ ˉ a b c d e f g ] \bar[abcdefg] with a step showing each coefficient being 7654321 1 0 n 7654321-10^n . This will explain why you added [ ˉ a b c d e f g ] \bar[abcdefg] to the viewers.

Jaleb Jay - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...