An Interesting Side Relation

Geometry Level pending

In a triangle A B C ABC , a 2 = b ( b + c ) a^2=b(b+c) where a = B C a=BC , b = C A b=CA and c = A B c=AB .

Find the ratio A B \dfrac{\angle A}{\angle B} .

Bonus: Try getting a solution without using trigonometry. I couldn't :)

Source: A small deviation from INMO-1992.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

From cosine rule , we get

a 2 = b 2 + c 2 2 b c cos A Given that a 2 = b ( b + c ) b 2 + b c = b 2 + c 2 2 b c cos A b = c 2 b cos A By sine rule b sin B = c sin C = k sin B = sin C 2 sin B cos A As sin C = sin ( 18 0 A B ) = sin ( A + B ) = sin ( A + B ) 2 sin B cos A = sin A cos B + sin B cos A 2 sin B cos A = sin A cos B sin B cos A sin B = sin ( A B ) B = A B 2 B = A A B = 2 \begin{aligned} \blue{a^2} & = b^2 + c^2 - 2bc \cos A & \small \blue{\text{Given that }a^2 = b(b+c)} \\ \blue{b^2+bc} & = b^2 + c^2 - 2bc \cos A \\ b & = c-2b\cos A & \small \blue{\text{By sine rule }\frac b{\sin B} = \frac c{\sin C} = k} \\ \sin B & = \sin C - 2\sin B \cos A & \small \blue{\text{As } \sin C = \sin (180^\circ - A -B) = \sin (A+B)} \\ & = \sin (A+B) - 2\sin B \cos A \\ & = \sin A \cos B + \sin B \cos A - 2 \sin B \cos A \\ & = \sin A \cos B - \sin B \cos A \\ \sin B & = \sin (A-B) \\ B & = A-B \\ 2B & = A \\ \implies \frac {\angle A}{\angle B} & = \boxed 2 \end{aligned}

Let us extend C A \overline {CA} to D D such that A D = A B = c |\overline {AD}|=|\overline {AB}|=c . Then, since

a 2 = b ( b + c ) a b = b + c a B C A C = D C B C a^2=b(b+c)\implies \dfrac{a}{b}=\dfrac{b+c}{a}\implies \dfrac{|\overline {BC}|}{|\overline {AC}|}=\dfrac{|\overline {DC}|}{|\overline {BC}|} ,

therefore A B C \triangle {ABC} and D B C \triangle {DBC} are similar, with A B C = B D C = B \angle {ABC}=\angle {BDC}=\angle B .

So A = 2 B D C = 2 B \angle A=2\angle {BDC}=2\angle B and the required ratio is A B = 2 \dfrac{\angle A}{\angle B}=\boxed 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...