An intriguing integral

Calculus Level 4

For y > 0 y>0 , define A ( y ) = 0 x e x 1 e x y d x . A(y) = \int_0^\infty x e^{-x} \sqrt{1 - e^{-xy}} \, dx . If 0 1 A ( y ) d y = K K + 1 , \int_0^1 A(y) \, dy = \dfrac K{K+1} , then find the value of K K .

2 4 1 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Mar 30, 2019

The substitution u = = e x y u = =e^{-xy} gives A ( y ) = y 2 0 1 ln u u y 1 1 1 u d u = y 2 F ( y 1 ) A(y) \; = \; -y^{-2}\int_0^1 \ln u \,u^{y^{-1}-1}\sqrt{1-u}\,du \; = \; -y^{-2}F'(y^{-1}) where F F is expressed in terms of the beta function: F ( t ) = B ( t , 3 2 ) F(t) \; = \; B(t,\tfrac32) Thus 0 1 A ( y ) d y = 1 F ( t ) d t = lim T [ F ( 1 ) F ( T ) ] = F ( 1 ) = B ( 1 , 3 2 ) = Γ ( 3 2 ) Γ ( 5 2 ) = 2 3 \int_0^1 A(y)\,dy \; = \; -\int_1^\infty F'(t)\,dt \; = \; \lim_{T \to \infty}\big[F(1) - F(T)\big] \; = \; F(1) = B(1,\tfrac32) = \frac{\Gamma(\frac32)}{\Gamma(\frac52)} \; = \; \tfrac23 making the answer K = 2 K = \boxed{2} .

Good job sir. I appreciate your work.

Srinivasa Raghava - 2 years, 2 months ago

Wow same method....

Rohan Shinde - 2 years, 2 months ago
Martin Coloma
Apr 3, 2019

X = K K + 1 = 0 1 0 x e x 1 e x y d x d y = 0 x e x 0 1 1 e x y d y d x X=\frac { K }{ K+1 } =\int _{ 0 }^{ 1 }{ \int _{ 0 }^{ \infty }{ x{ e }^{ -x }\sqrt { 1-{ e }^{ -xy } } dxdy= } } \int _{ 0 }^{ \infty }{ x{ e }^{ -x }\int _{ 0 }^{ 1 }{ \sqrt { 1-{ e }^{ -xy } } dydx } }

The substitution u = a r c o s ( e x y 2 ) u=arcos\left( { e }^{ -\frac { xy }{ 2 } } \right) gives:

0 1 1 e x y d y = 0 a r c o s ( e x 2 ) s e c ( u ) c o s ( u ) d u = 2 x ( ln ( 1 + 1 e x ) + x 2 1 e x ) \int _{ 0 }^{ 1 }{ \sqrt { 1-{ e }^{ -xy } } dy } =\int _{ 0 }^{ arcos({ e }^{ -\frac { x }{ 2 } }) }{ sec(u)-cos(u)du} =\frac { 2 }{ x } \left( \ln { (1+\sqrt { 1-{ e }^{ -x } } ) } +\frac { x }{ 2 } -\sqrt { 1-{ e }^{ -x } } \right)

Then:

X = 0 2 ( ln ( 1 + 1 e x ) + x 2 1 e x ) e x d x = 2 [ e x ln ( 1 + 1 e x ) 1 2 ( 1 e x ) + 1 e x 1 + x 2 e x 2 3 ( 1 e x ) 3 2 ] 0 X=\int _{ 0 }^{ \infty }{ 2\left( \ln { (1+\sqrt { 1-{ e }^{ -x } } ) } +\frac { x }{ 2 } -\sqrt { 1-{ e }^{ -x } } \right) { e }^{ -x }dx } ={ 2\left[ -{ e }^{ -x }\ln { \left( 1+\sqrt { 1-{ e }^{ -x } } \right) } -\frac { 1 }{ 2 } \left( 1-{ e }^{ -x } \right) +\sqrt { 1-{ e }^{ -x } } -\frac { 1+x }{ 2 } { e }^{ -x }-\frac { 2 }{ 3 } { \left( 1-{ e }^{ -x } \right) }^{ \frac { 3 }{ 2 } } \right] }_{ 0 }^{ \infty }

X = K K + 1 = 2 [ ( 1 2 + 1 2 3 ) ( 1 2 ) ] = 2 3 = 2 2 + 1 X=\frac { K }{ K+1 }= { 2\left[ \left( -\frac { 1 }{ 2 } +1-\frac { 2 }{ 3 } \right) -\left( -\frac { 1 }{ 2 } \right) \right] =\frac { 2 }{ 3 } =\frac { 2 }{ 2+1 } }

Thus

K = 2 K=2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...