For y > 0 , define A ( y ) = ∫ 0 ∞ x e − x 1 − e − x y d x . If ∫ 0 1 A ( y ) d y = K + 1 K , then find the value of K .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Good job sir. I appreciate your work.
Wow same method....
X = K + 1 K = ∫ 0 1 ∫ 0 ∞ x e − x 1 − e − x y d x d y = ∫ 0 ∞ x e − x ∫ 0 1 1 − e − x y d y d x
The substitution u = a r c o s ( e − 2 x y ) gives:
∫ 0 1 1 − e − x y d y = ∫ 0 a r c o s ( e − 2 x ) s e c ( u ) − c o s ( u ) d u = x 2 ( ln ( 1 + 1 − e − x ) + 2 x − 1 − e − x )
Then:
X = ∫ 0 ∞ 2 ( ln ( 1 + 1 − e − x ) + 2 x − 1 − e − x ) e − x d x = 2 [ − e − x ln ( 1 + 1 − e − x ) − 2 1 ( 1 − e − x ) + 1 − e − x − 2 1 + x e − x − 3 2 ( 1 − e − x ) 2 3 ] 0 ∞
X = K + 1 K = 2 [ ( − 2 1 + 1 − 3 2 ) − ( − 2 1 ) ] = 3 2 = 2 + 1 2
Thus
K = 2
Problem Loading...
Note Loading...
Set Loading...
The substitution u = = e − x y gives A ( y ) = − y − 2 ∫ 0 1 ln u u y − 1 − 1 1 − u d u = − y − 2 F ′ ( y − 1 ) where F is expressed in terms of the beta function: F ( t ) = B ( t , 2 3 ) Thus ∫ 0 1 A ( y ) d y = − ∫ 1 ∞ F ′ ( t ) d t = T → ∞ lim [ F ( 1 ) − F ( T ) ] = F ( 1 ) = B ( 1 , 2 3 ) = Γ ( 2 5 ) Γ ( 2 3 ) = 3 2 making the answer K = 2 .