An Intriguing Polynomial Problem!

Algebra Level 5

P ( x ) = 5 x 2015 + x 2 + x + 1 \large{P(x) = 5x^{2015} + x^2 + x + 1}

Let P ( x ) P(x) be a polynomial as defined above with the roots of P ( x ) P(x) being x 1 , x 2 , x 3 , , x 2015 x_1, x_2, x_3, \ldots, x_{2015} . Find the value of:

( i = 1 2015 ( 1 + x i ) ) ( i = 1 2015 1 1 x i ) \large{\left(\prod_{i=1}^{2015} (1+x_i)\right ) \left( \sum_{i=1}^{2015} \frac{1}{1-x_i} \right )}

If you want to solve it's sister problems, try these:
400 Followers Problem
150 Friends Problem


The answer is 1007.800.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

P ( x ) = 5 ( x x 1 ) ( x x 2 ) ( x x 3 ) ( x x 2015 ) = 5 i = 1 2015 ( x x i ) P(x) = 5(x-x_1)(x-x_2)(x-x_3)\ldots(x-x_{2015}) = 5\displaystyle \prod_{i=1}^{2015} (x-x_i)

P ( 1 ) = 5 i = 1 2015 ( 1 x i ) = 5 ( 1 ) 2015 i = 1 2015 ( 1 + x i ) P(-1) = 5\displaystyle \prod_{i=1}^{2015}(-1-x_i) = 5 (-1)^{2015} \prod_{i=1}^{2015} (1+x_i)

P ( 1 ) 5 = i = 1 2015 ( 1 + x i ) -\dfrac{P(-1)}{5} = \prod_{i=1}^{2015} (1+x_i)

P ( x ) = 5 ( 1. ( x x 2 ) . ( x x 3 ) ( x x 2015 ) + ( x x 1 ) . 1. ( x x 3 ) ( x x 2015 ) + + ( x x 1 ) . ( x x 2 ) ( x x 2014 ) . 1 ) \Rightarrow P'(x) = 5(1.(x-x_2).(x-x_3)\ldots(x-x_{2015}) + (x-x_1).1.(x-x_3)\ldots(x-x_{2015}) + \ldots + (x-x_1).(x-x_2)\ldots(x-x_{2014}).1)

i = 1 2015 1 1 x i = 5 [ ( 1 x 2 ) . ( 1 x 3 ) ( 1 x 2015 ) + ( 1 x 1 ) . ( 1 x 3 ) ( 1 x 2015 ) + + ( 1 x 1 ) . ( 1 x 2 ) ( 1 x 2014 ) ] 5 i = 1 2015 ( 1 x i ) \displaystyle \sum_{i=1}^{2015} \dfrac{1}{1-x_i} = \displaystyle \dfrac{5[(1-x_2).(1-x_3)\ldots(1-x_{2015}) + (1-x_1).(1-x_3)\ldots(1-x_{2015}) + \ldots + (1-x_1).(1-x_2)\ldots(1-x_{2014})]}{5 \prod_{i=1}^{2015} (1 - x_i)}

i = 1 2015 1 1 x i = P ( 1 ) P ( 1 ) \Rightarrow \displaystyle \sum_{i=1}^{2015} \dfrac{1}{1-x_i} = \dfrac{P'(1)}{P(1)}

The net expression is now,

E = P ( 1 ) 5 P ( 1 ) P ( 1 ) = 4 5 10078 8 = 10078 10 = 1007.8 E = \dfrac{- P(-1)}{5} \dfrac{P'(1)}{P(1)} = \dfrac{4}{5} \dfrac{10078}{8} = \dfrac{10078}{10} = \boxed{1007.8}

I missed the 5,damn!

Adarsh Kumar - 5 years, 10 months ago

I didnt get the fourth step ?

A Former Brilliant Member - 5 years, 11 months ago

Log in to reply

Sorry there was an unnecessary summation symbol there.

Vishwak Srinivasan - 5 years, 11 months ago
Kazem Sepehrinia
Jul 18, 2015

1 + x i 1+x_i 's are the roots of P ( x 1 ) = 5 ( x 1 ) 2015 + x 2 x + 1 P(x-1)=5(x-1)^{2015}+x^2-x+1 1 x i 1-x_i 's are the roots of P ( 1 x ) = 5 ( x 1 ) 2015 + x 2 3 x + 3 P(1-x)=-5(x-1)^{2015}+x^2-3x+3 Now i = 1 2015 ( 1 + x i ) \prod_{i=1}^{2015} (1+x_i) is the product of roots of P ( x 1 ) P(x-1) , which equals to ( 1 ) 2015 5 + 1 5 = 4 5 (-1)^{2015} \frac{-5+1}{5}=\frac{4}{5} And using Vieta's formulas for P ( 1 x ) P(1-x) we get i = 1 2015 1 1 x i = i = 1 2015 ( j = 1 2015 ( 1 x j ) ( 1 x i ) ) i = 1 2015 ( 1 x i ) = ( 1 ) 2014 5 × 2015 3 5 ( 1 ) 2015 5 + 3 5 = 10078 8 \sum_{i=1}^{2015} \frac{1}{1-x_i}=\frac{\sum_{i=1}^{2015} \left(\frac{\prod_{j=1}^{2015} (1-x_j)}{(1-x_i)}\right)}{\prod_{i=1}^{2015} (1-x_i)}=\frac{(-1)^{2014} \frac{-5\times2015-3}{-5}}{(-1)^{2015} \frac{5+3}{-5}}=\frac{10078}{8} So the answer is 4 5 10078 8 = 1007.8 \frac{4}{5}\frac{10078}{8}=1007.8

i did same

Dev Sharma - 5 years, 5 months ago
Ravi Dwivedi
Jul 18, 2015

x i x_i are roots of P ( x ) , i = 1 , 2 , . . . , 2015 P(x),i=1,2,...,2015

So ( 1 + x i ) (1+x_i) are roots of P ( x 1 ) = 5 ( x 1 ) 2015 + ( x 1 ) 2 + ( x 1 ) + 1 P(x-1)=5(x-1)^{2015}+(x-1)^2+(x-1)+1

Clearly the product i = 1 2015 ( 1 + x i ) = constant term coefficient of x 2015 = ( 5 + 1 1 + 1 ) 5 = 4 5 \displaystyle \prod_{i=1}^{2015} (1+x_i)=-\frac{\text{constant term}}{\text{coefficient of }x^{2015}} = -\frac{(-5+1-1+1)}{5}=\frac{4}{5}

Now P ( x ) = i = 1 2015 ( x x i ) P(x)=\displaystyle \prod_{i=1}^{2015} (x-x_i) Differentiation yields P ( x ) = P ( x ) ( i = 1 2015 1 x x i ) P'(x)=P(x)\left(\displaystyle \sum_{i=1}^{2015} \frac{1}{x-x_i} \right )

Put x = 1 x=1

( i = 1 2015 1 1 x i ) = P ( 1 ) P ( 1 ) = 2015 × 5 + 2 + 1 8 = 10078 8 = 5039 4 \large \left(\displaystyle \sum_{i=1}^{2015} \frac{1}{1-x_i} \right )=\frac{P'(1)}{P(1)}=\frac{2015 \times 5+2+1}{8}=\frac{10078}{8}=\frac{5039}{4}

Multiplying both we get

Answer= 5039 4 × 4 5 = 1007.8 \large \frac{5039}{4} \times \frac{4}{5}=\boxed{1007.8}

Moderator note:

A slightly easier approach to this problem would be to use the Remainder-Factor Theorem interpretation of polynomials, and observe that

( 1 + x i ) = ( 1 ) n ( 1 x i ) = ( 1 ) n P ( x i ) \prod (1+x_i) = (-1)^n \prod ( -1 - x_i ) = (-1)^n P(-x_i)

Similarly, to calculate 1 1 x i \sum \frac{1}{1-x_i } , we can simply look at the coefficients of P ( 1 x ) P ( 1-x) . This is related to your solution because P ( 1 ) P' (1) is the coefficient of the linear term.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...