An Intriguing Sum

Algebra Level 2

1 + a + 3 b + 9 c + 3 a b + 9 a c + 27 b c + 27 a b c = ? 1+a+3b+9c+3ab+9ac+27bc+27abc=?

Given that a = 999 \red{a=999} , b = 333 \blue{b=333} , and c = 111 \green{c=111} , evaluate the above sum.


The answer is 1000000000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Given that a = 999 a=999 , b = 333 b=333 , and c = 111 c=111 , implies that a = 3 b = 9 c a=3b=9c .

S = 1 + a + 3 b + 9 c + 3 a b + 9 a c + 27 b c + 27 a b c = 1 + a + a + a + a 2 + a 2 + a 2 + a 3 = 1 + 3 a + 3 a 2 + a 3 ( 1 + a ) 3 = ( 1 + 999 ) 3 = 100 0 3 = 1000000000 \begin{aligned} S & = 1 + a + 3b + 9c + 3ab + 9ac + 27bc+27abc \\ & = 1 + a + a + a + a^2 + a^2 + a^2 + a^3 \\ & = 1 + 3a + 3a^2 + a^3 \\ & - (1+a)^3 = (1+999)^3 = 1000^3 \\ & = \boxed{1000 000 000} \end{aligned}

Anthony Lamanna
Oct 3, 2019

Notice that b = a 3 b=\frac{a}{3} and c = a 9 c=\frac{a}{9} . Substituting in to the formula yields,

1 + a + 3 a 3 + 9 a 9 + 3 a a 3 + 9 a a 9 + 27 a 3 a 9 + 27 a a 3 a 9 1+a+3\frac{a}{3}+9\frac{a}{9}+3a\frac{a}{3}+9a\frac{a}{9}+27\frac{a}{3}\frac{a}{9}+27a\frac{a}{3}\frac{a}{9}

= 1 + a + a + a + a 2 + a 2 + a 2 + a 3 =1+a+a+a+a^{2}+a^{2}+a^{2}+a^{3}

= 1 + 3 a + 3 a 2 + a 3 =1+3a+3a^{2}+a^{3}

Notice that coefficients make up the 4th row of Pascal's Triangle, meaning this expression factors into the cube of a binomial. Thus, we can write,

1 + 3 a + 3 a 2 + a 3 = ( 1 + a ) 3 1+3a+3a^{2}+a^{3}=(1+a)^{3}

We can now substitute in the given value of a = 999 a=999 to find ( 1 + 999 ) 3 = ( 1000 ) 3 = 1 , 000 , 000 , 000 (1+999)^{3}=(1000)^{3}=1,000,000,000

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...