Lonely Consonants

How many different ways are there to rearrange the letters in the word "ALONE" such that there are no consonants next to each other?


The answer is 72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Viki Zeta
Oct 25, 2016

Let's take this in 2 2 different cases

Case 1 : When the word starts with a vowel The first letter can be filled in 3 ways, since there are 3 different vowels. Since consonants must not occur together, in this word given, only way is to arrange vowel and consonants alternatively. Must also note that letters can repeat. So second letter can be filled in 2 ways, as there are 2 consonants 3rd letter can be filled in 3 ways, as 3 there are vowels 4th letter can be filled in 2 ways, 2 consonants 5th letter can be filled in 1 way Total no of different letters formed = 3 × 3 × 2 × 2 = 36 Case 2 : When the word starts with a consonant The first letter can be filled in 2 ways, since there are 2 different consonants. So second letter can be filled in 3 ways, as there are 3 vowels 3rd letter can be filled in 2 ways, as 2 there are consonants 4th letter can be filled in 3 ways, 3 vowels 5th letter can be filled in 1 way Total no of different letters formed = 3 × 3 × 2 × 2 = 36 Total no of ways to form different words = 36 + 36 = 72 \boxed{\text{Case 1 : When the word starts with a vowel}}\\ \text{The first letter can be filled in 3 ways, since there are 3 different vowels.} \\ \text{Since consonants must not occur together, in this word given, only way is to arrange vowel and consonants alternatively. Must also note that letters can repeat.} \\ \text{So second letter can be filled in 2 ways, as there are 2 consonants} \\ \text{3rd letter can be filled in 3 ways, as 3 there are vowels } \\ \text{4th letter can be filled in 2 ways, 2 consonants} \\ \text{5th letter can be filled in 1 way} \\ \therefore \text{Total no of different letters formed = } 3 \times 3 \times 2 \times 2 = 36\\ \boxed{\text{Case 2 : When the word starts with a consonant}}\\ \text{The first letter can be filled in 2 ways, since there are 2 different consonants.} \\ \text{So second letter can be filled in 3 ways, as there are 3 vowels} \\ \text{3rd letter can be filled in 2 ways, as 2 there are consonants } \\ \text{4th letter can be filled in 3 ways, 3 vowels} \\ \text{5th letter can be filled in 1 way} \\ \therefore \text{Total no of different letters formed = } 3 \times 3 \times 2 \times 2 = 36\\ \boxed{\therefore \text{Total no of ways to form different words = } 36 + 36 = 72}

Matteo Benigni
Oct 25, 2016

There are 2 consonants in the word (L, N), so there are two possible arrangements for them to be next to each other (LN, NL). For each of these, we have 4 different cases (either the 2-letter group is in positions 1-2, 2-3, 3-4 or 4-5), and for each of these 4 cases the remaining vowels can be rearranged in 3 ! = 6 3!=6 ways.

So, the result is obtained by subtracting from all the possible rearrangements of the letters (5!) the ones that we listed above: 5 ! 2 4 6 = 120 48 = 72 5! - 2*4*6 = 120 - 48 =\boxed{72}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...