An irregular tetrahedron

Geometry Level pending

An irregular tetrahedron has a base that is an equilateral triangle with side length 10 10 . Its lateral faces make angles of 6 0 , 6 0 , 8 0 60^{\circ} , 60^{\circ}, 80^{\circ} with the base. Find the height h h of the tetrahedron, and enter the value of 1000 h \lfloor 1000 h \rfloor .


The answer is 6506.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let O A B C OABC be the tetrahedron, A B C ABC its base (the equilateral triangle), h = A D h=AD the required height, E E the midpoint of A B AB and D F B C DF\bot BC .
The plane O E C OEC is a plane of symmetry of the tetrahedron, hence D D lies on C E CE . Moreover, by the Theorem of three perpendiculars, O F B C OF\bot BC and O E A B OE\bot AB .

Let O A B OAB be the lateral face that makes the angle of 80 80{}^\circ with the base. Then, O E D = 80 \angle OED=80{}^\circ and O F D = 60 \angle OFD=60{}^\circ .
In O E D \triangle OED , a 1 = E D = h cot 80 ( 1 ) {{a}_{1}}=ED=h\cdot \cot 80{}^\circ \ \ \ \ \ (1)

In the equilateral A B C \triangle ABC , the median C E CE is also angle bisector of A C B \angle ACB , hence, D C F = 30 \angle DCF=30{}^\circ , so the right triangles A D F \triangle ADF and C D F \triangle CDF are congruent.
Thus, a 2 D C = O F l 1 {{a}_{2}} \coloneqq DC=OF\coloneqq {{l}_{1}} .

In O D F \triangle ODF , D F = l 1 cos 60 D F = l 1 2 D F = a 2 2 DF={{l}_{1}}\cdot \cos 60{}^\circ \Rightarrow DF=\dfrac{{{l}_{1}}}{2}\Rightarrow DF=\dfrac{{{a}_{2}}}{2} .

By Pythagoras’ theorem on O D F \triangle ODF , O D 2 = O F 2 D F 2 h 2 = a 2 2 ( a 2 2 ) 2 a 2 = 2 3 h ( 2 ) O{{D}^{2}}=O{{F}^{2}}-D{{F}^{2}}\Rightarrow {{h}^{2}}={{a}_{2}}^{2}-{{\left( \frac{{{a}_{2}}}{2} \right)}^{2}}\Rightarrow {{a}_{2}}=\dfrac{2}{\sqrt{3}}h \ \ \ \ \ (2) .

In the equilateral A B C \triangle ABC we have A E = B C 3 2 A E = 5 3 ( 3 ) AE=BC\cdot \frac{\sqrt{3}}{2}\Rightarrow AE=5\sqrt{3} \ \ \ \ \ (3) .

Combining ( 1 ) (1) , ( 2 ) (2) and ( 3 ) (3) , we get C E = a 1 + a 2 5 3 = h cot 80 + 2 3 h h = 15 2 + 3 cot 80 h 6.50644251 \begin{aligned} CE={{a}_{1}}+{{a}_{2}} & \Rightarrow 5\sqrt{3}=h\cdot \cot 80{}^\circ +\dfrac{2}{\sqrt{3}}h \\ & \Rightarrow h=\dfrac{15}{2+\sqrt{3}\cdot \cot 80{}^\circ } \\ & \Rightarrow h\approx 6.50644251 \\ \end{aligned}

For the answer, 1000 h = 6506 \left\lfloor 1000h \right\rfloor =\boxed{6506} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...