An ISI Math

Algebra Level 5

Suppose f : R R f:\mathbb{R} \to \mathbb{R} is a function given by

f ( x ) = { 1 if x = 1 e ( x 10 1 ) + ( x 1 ) 2 sin 1 x 1 if x 1 f(x) =\begin{cases} 1 & \text{if }x=1 \\ e^{(x^{10}-1)}+(x-1)^2\sin \dfrac1{x-1} & \text{if } x\neq 1\end{cases}

Evaluate lim u [ 100 u u k = 1 100 f ( 1 + k u ) ] \displaystyle \lim_{u\to\infty} \left[100u-u\sum_{k=1}^{100} f\left(1+\frac{k}{u}\right)\right]


The answer is -50500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Théo Leblanc
Jun 16, 2019

Fisrt assume that f f is differentiable at x = 1 x=1 and that f ( 1 ) = 10 f'(1)=10

Then, k N , f ( 1 + k x ) = x + 1 + 10 k x + o ( 1 x ) \forall k \in \mathbb{N}, f\left(1+\dfrac{k}{x}\right) \underset{x\rightarrow +\infty}{=} 1 + 10\dfrac{k}{x} + o\left(\dfrac{1}{x}\right)

So, because the sum is finite,

x k = 1 100 f ( 1 + k x ) = x + x k = 1 100 [ 1 + 10 k x + o ( 1 x ) ] = x + 100 x + k = 1 100 10 k + o ( 1 ) = x + 100 x + 50500 + o ( 1 ) \begin{aligned} x \displaystyle \sum_{k=1}^{100} f\left(1+\dfrac{k}{x}\right) & \underset{x\rightarrow +\infty}{=} x \displaystyle \sum_{k=1}^{100} \left[ 1 + 10\dfrac{k}{x} + o\left(\dfrac{1}{x}\right) \right] \\ & \underset{x\rightarrow +\infty}{=} 100x + \displaystyle \sum_{k=1}^{100} 10k \quad + o\left(1\right)\\ & \underset{x\rightarrow +\infty}{=} 100x + 50500 + o\left(1\right) \end{aligned}

Thus the answer is 50500 \boxed{-50500}

Proof that f f is differentiable at x = 1 x=1 and that f ( 1 ) = 10 f'(1)=10

Let g : R R g: \mathbb{R} \rightarrow \mathbb{R} defined by g ( x ) = x 2 sin ( 1 x ) g(x)=x^2\sin(\dfrac{1}{x}) if x 0 x \neq 0 and g ( 0 ) = 0 g(0)=0 .

g g is continuous and differentiable at x = 1 x=1 because:

g ( x ) x 2 x 0 0 = g ( 0 ) |g(x)| \leq x^2 \underset{x\rightarrow 0}{\longrightarrow} 0=g(0)

And g ( x ) g ( 0 ) x 0 = x sin ( 1 x ) x x 0 0 | \dfrac{g(x)-g(0)}{x-0} | = |x\sin(\dfrac{1}{x})| \leq |x| \underset{x\rightarrow 0}{\longrightarrow} 0

Therefore g g is differentiable at x = 1 x=1 and g ( 0 ) = 0 g'(0)=0 . So obviously, h = g ( i d 1 ) h=g\circ (id-1) is differentiable at x = 1 x=1 and h ( 1 ) = 0 h'(1)=0 .

This proves that f f is differentiable at x = 1 x=1 and f ( 1 ) = d e x 10 1 d x x = 1 = 10 x 9 e x 10 1 x = 1 = 10 f'(1) = \dfrac{ d e^{x^{10}-1} }{dx} |_{x=1} = 10 x^9 e^{x^{10}-1}|_{x=1}=10 \quad \square

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...