An olympiad adventure

Find the least positive integer p p for which there exists a set { λ 1 , λ 2 , , λ p } \{\lambda_1,\lambda_2,\ldots,\lambda_p\} consisting of p p distinct positive integers such that ( 1 1 λ 1 ) ( 1 1 λ 2 ) ( 1 1 λ p ) = 51 2010 \left( 1-\frac{1}{\lambda_1} \right) \left( 1-\frac{1}{\lambda_2} \right) \cdots \left( 1-\frac{1}{\lambda_p}\right)=\frac{51}{2010}


The answer is 39.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

This is problem N1 (proposed by Canada) of the 51st IMO Shortlist (2010).

Official solution:

Suppose that for some p p there exist the desired numbers; we may assume that λ 1 < λ 2 < < λ p \lambda_1<\lambda_2<\ldots<\lambda_p .

Surely λ 1 > 1 \lambda_1>1 since otherwise 1 1 λ 1 = 0 1-\dfrac{1}{\lambda_1}=0 .

So we have 2 λ 1 λ 2 1 λ p ( p 1 ) 2\le\lambda_1\le\lambda_2-1\le\ldots\le\lambda_p-(p-1) , hence λ i i + 1 \lambda_i\ge i+1 for each i = 1 , , p i=1, \ldots, p .

Therefore,

51 2010 = ( 1 1 λ 1 ) ( 1 1 λ 2 ) ( 1 1 λ p ) \dfrac{51}{2010}=\left( 1-\dfrac{1}{\lambda_1} \right) \left( 1-\dfrac{1}{\lambda_2} \right) \ldots \left( 1-\dfrac{1}{\lambda_p}\right)

( 1 1 2 ) ( 1 1 3 ) ( 1 1 p + 1 ) \qquad\;\;\ge \left( 1-\dfrac{1}{2} \right) \left( 1-\dfrac{1}{3} \right) \ldots \left( 1-\dfrac{1}{p+1}\right)

= 1 2 . 2 3 . p p + 1 = 1 p + 1 \qquad\;\;=\dfrac{1}{2}.\dfrac{2}{3}.\ldots\dfrac{p}{p+1}=\dfrac{1}{p+1} ,

which implies p + 1 2010 51 > 39 p+1\ge\dfrac{2010}{51}>39 , so p 39 p\ge39 .

Now we are left to show that p = 39 p=39 fits. Consider the set { 2 , 3 , , 33 , 35 , 36 , , 40 , 67 } \{2, 3, \ldots, 33, 35, 36, \ldots, 40, 67\} which contains exactly 39 39 numbers. We have:

1 2 . 2 3 . 32 33 . 34 35 . 39 40 . 66 67 = 1 33 . 34 40 . 66 67 = 17 670 = 51 2010 \dfrac{1}{2}.\dfrac{2}{3}.\ldots\dfrac{32}{33}.\dfrac{34}{35}.\ldots\dfrac{39}{40}.\dfrac{66}{67}=\dfrac{1}{33}.\dfrac{34}{40}.\dfrac{66}{67}=\dfrac{17}{670}=\dfrac{51}{2010}

hence for p = 39 p=39 there exists a desired example.

how people think of all this stuff!! :)

Aditya Jain - 5 years, 8 months ago

Great solution. Thanks for sharing it.

Sandeep Bhardwaj - 5 years, 10 months ago

Why should λ i i + 1 \lambda_i\ge i+1 ,can you explain?

hari Varadarajan - 5 years, 8 months ago

If they don't have to be distinct, ( 1 1 67 ) ( 1 1 25 ) ( 1 1 18 ) ( 1 1 11 ) ( 1 1 2 ) ( 1 1 2 ) ( 1 1 2 ) ( 1 1 2 ) ( 1 1 2 ) = 51 2010 . \left(1-\frac1{67}\right)\cdot\left(1-\frac1{25}\right)\cdot\left(1-\frac1{18}\right)\cdot \left(1-\frac1{11}\right)\cdot\left(1-\frac1{2}\right)\cdot\left(1-\frac1{2}\right)\cdot\left(1-\frac1{2}\right)\cdot\left(1-\frac1{2}\right)\cdot\left(1-\frac1{2}\right) = \frac{51}{2010}. Leave it to me to overlook that one word!

Arjen Vreugdenhil - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...