A(N) Problem!

Find the number of natural numbers "n" for which this expression simplifies to a natural number. 2014 n 2 + 2014 n + 2014 n \frac{2014n^{2}+2014n+2014}{n}


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Jaydee Lucero
Aug 13, 2014

Write 2014 n 2 + 2014 n + 2014 n = 2014 n + 2014 + 2014 n \frac{2014n^2+2014n+2014}{n}=2014n+2014+\frac{2014}{n} The first two terms are always natural for any natural number n n , so we'll focus with 2014 n \frac{2014}{n} . Since 2014 = 2 × 19 × 53 2014=2 \times 19 \times 53 has ( 1 + 1 ) ( 1 + 1 ) ( 1 + 1 ) = 8 (1+1)(1+1)(1+1)=8 positive factors, then there are 8 possible natural values of n n for which n n divides 2014, that is, 2014 n \frac{2014}{n} is a natural number, and thus is 2014 n 2 + 2014 n + 2014 n \frac{2014n^2+2014n+2014}{n} . The answer is 8 \boxed{8} .

nice ...........................

math man - 6 years, 10 months ago
Bill Bell
Sep 5, 2014

The numerator factors as 2014 ( n 2 + n + 1 ) 2014\left( { n }^{ 2 }+n+1 \right) . Then the entire expression will be a natural number if n n divides either 2014 or n 2 + n + 1 { n }^{ 2 }+n+1 evenly. Only when n = 1 n=1 does n n divide the polynomial evenly. The divisors of 2014 form the set { 1 , 2 , 19 , 38 , 53 , 106 , 1007 , 2014 } \left\{ 1, 2, 19, 38, 53, 106, 1007, 2014 \right\} and the cardinality of this set is eight.

Akash Deep
Aug 17, 2014

( 2014 n 2 + 2014 n + 2014 = 2014 ( n 2 + n + 1 ) n o w n 2014 ( n 2 + n + 1 ) b u t n n 2 + n s o , n d o e s n o t d i v i d e n 2 + n + 1 s o w e n e e d t o f i n d n f o r w h i c h n 2014 b y f i n d i n g o u t i t s f a c t o r s 2 19 53 w e g e t t o t a l d i v i s o r s o f 2014 = ( 1 + 1 ) ( 1 + 1 ) ( 1 + 1 ) = 8 (2014{ n }^{ 2 }+2014n+2014\\ =\quad 2014({ n }^{ 2 }+n+1)\\ now\quad n|2014({ n }^{ 2 }+n+1)\\ but\quad n\quad |\quad { n }^{ 2 }+n\\ so\quad ,\quad n\quad does\quad not\quad divide\quad { n }^{ 2 }+n+1\\ so\quad we\quad need\quad to\quad find\quad n\quad for\quad which\quad \\ n|2014\\ by\quad finding\quad out\quad its\quad factors\quad 2*19*53\\ we\quad get\quad total\quad divisors\quad of\quad 2014\quad =\quad (1+1)(1+1)(1+1)=8\quad

Kartik Sharma
Aug 13, 2014

2014 n 2 + 2014 n + 2014 n = 2014 ( n 2 + n + 1 ) n \frac{2014{n}^{2} + 2014n + 2014}{n} = \frac{2014({n}^{2} + n + 1)}{n}

Therefore, it will be a natural number iff

2014 = 0 mod n, n 2 {n}^{2} + n + 1 = 0 mod n

1st case -

It is only possible when n is a divisor of 2014. Hence τ ( 2014 ) \tau(2014) = (1 + 1)(1 + 1)(1 + 1) [ 2014 = 2* 19 * 53]

= 8

2nd Case -

It is possible for n = 1 only for all real values(for more, check out Math Math's comment). But we have included this solution already because 1 also divides 2014.

Therefore, the answer is 8 \boxed{8}

not a real solution, there's also the case where n ∤ 2014 , n ∤ n 2 + n + 1 , n 2014 ( n 2 + n + 1 ) n\not\mid 2014, n\not\mid n^2+n+1, n\mid 2014(n^2+n+1) . But it's clear that gcd ( n 2 + n + 1 , n ) = 1 \gcd(n^2+n+1,n)=1 , hence we only have n 2014 n\mid 2014 , which gives 8 8 solutions.

mathh mathh - 6 years, 10 months ago

Log in to reply

Thanks!!! Edited!

Kartik Sharma - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...