An SAT Math Question

Algebra Level 2

H ( x ) = x 2 + 1 H(x)=x^2+1 and K ( x ) = x 2 + 4 K(x)=-x^2+4 .

What are the solutions to K ( H ( x ) ) = 0 K\left( H (x) \right)=0 ?

± 2 , ± 3 \pm 2, \pm \sqrt{3} ± 1 , ± i 3 \pm 1, \pm i \sqrt{3} ± 2 , ± i \pm 2, \pm i ± i , ± i 3 \pm i, \pm i \sqrt{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Graeme Foster
Aug 6, 2014

K ( H ( x ) ) K(H(x))

= K ( x 2 + 1 ) = K(x^2+1)

= ( x 2 + 1 ) 2 + 4 = -(x^2+1)^2+4

= ( x 4 + 2 x 2 + 1 ) + 4 = -(x^4+2x^2+1)+4

= x 4 2 x 2 + 3 = -x^4-2x^2+3

So solve for x 2 x^2 using the quadratic formula gives:

x 2 = ( 2 ) ± 4 + 12 2 x^2 = \frac{-(-2)\pm\sqrt{4+12}}{-2}

= 2 ± 4 2 =\frac{2\pm4}{-2}

= 1 ± 2 = 1 , 3 = -1 \pm 2 = 1, -3

So x 2 = 1 o r 3 x^2 = 1 or -3 thus x = ± 1 o r ± 3 i x = \pm 1 or \pm \sqrt{3}i

Very complicated answer IMHO. You just need to notice that K ( y ) = ( y 2 ) ( y + 2 ) K(y)= -(y-2)(y+2) then use y = H ( x ) y = H(x) which gives K ( H ( x ) ) = ( x 2 + 1 2 ) ( x 2 + 1 + 2 ) K(H(x))= - (x^2+1-2)(x^2+1+2) K ( H ( x ) ) = ( x 2 1 ) ( x 2 + 3 ) K(H(x))= -(x^2-1)(x^2+3) K ( H ( x ) ) = ( x 1 ) ( x + 1 ) ( x i 3 ) ( x + i 3 ) K(H(x))= -(x-1)(x+1)(x-i\sqrt{3})(x+i\sqrt{3}) hence the roots are ± 1 \pm 1 and ± i 3 \pm i\sqrt{3}

kevin dupond - 6 years, 10 months ago

Log in to reply

Hey can you tell me how to change the Background colour when you are writing the answer ?

Mithun K - 6 years, 10 months ago

I'd just factor after substitution after you get -(x^2 + 1)^2 + 4 = 0, multiply both sides by neg 1, you'll get a DOTS (difference of two squares)

Hobart Pao - 6 years, 10 months ago

K ( H ( x ) ) = 0 H ( x ) 2 + 4 = 0 4 = H ( x ) 2 H ( x ) = ± 2 x 2 + 1 = ± 2 K(H(x))=0\\ -{ H(x) }^{ 2 }+4=0\\ 4={ H(x) }^{ 2 }\\ H(x)=\pm 2\\ { x }^{ 2 }+1=\pm 2\\

If x 2 + 1 = 2 { x }^{ 2 }+1=2 , then

x 2 = 1 x = ± 1 { x }^{ 2 }=1\\ x=\pm 1

and if x 2 + 1 = 2 { x }^{ 2 }+1=-2 , then

x 2 = 3 x = ± 3 i { x }^{ 2 }=-3\\ x=\pm \sqrt { 3 } i

The solutions are x = ± 3 i x=\pm \sqrt { 3 } i or x = ± 1 x=\pm 1

Nicely presented solution

Ricardo Florez - 6 years, 10 months ago

This is an incredibly elegant solution.

Hans Gruber IV - 6 years, 10 months ago

Nicely written.

Emma Ask - 6 years ago
Lu Chee Ket
Aug 7, 2014

-(x^2 + 1)^2 + 4 = 0

=> (x^2 + 1)^2 - 2^2 = 0

=> (x^2 + 1 - 2)(x^2 + 1 + 2) = 0

=> (x^2 - 1)(x^2 + 3) = 0

=> x = +/- 1 OR x = +/- j sqrt(3)

William Lockhart
Oct 7, 2014

K ( H ( x ) ) = ( x 2 + 1 ) 2 + 4 K(H(x))=-(x^{2}+1)^{2}+4

K ( H ( x ) ) = x 4 2 x 2 1 + 4 K(H(x))=-x^{4}-2x^{2}-1+4

K ( H ( x ) ) = x 4 2 x 2 + 3 K(H(x))=-x^{4}-2x^{2}+3

0 = x 4 2 x 2 + 3 0=-x^{4}-2x^{2}+3

0 = ( x 2 3 ) ( x 2 1 ) 0=(-x^{2}-3)(x^{2}-1)

x 2 3 = 0 x 2 = 3 x = ± 3 i -x^{2}-3=0 →x^{2}=-3→x=±\sqrt{3}i

x 2 1 = 0 x 2 = 1 x = ± 1 x^{2}-1=0→x^{2}=1→x=±1

x = ± 1 , ± 3 i x=±1,± \sqrt{3}i

Ln Jena
Aug 21, 2014

Say: y = H ( x ) = x 2 + 1 y=H\left( x \right) ={ x }^{ 2 }+1

= > K ( H ( x ) ) = K ( y ) = y 2 + 4 = 0 => K(H\left( x \right) )=K(y)=-{ y }^{ 2 }+4=0

= > y = ± 2 => y=\pm 2

= > x 2 + 1 = ± 2 => { x }^{ 2 }+1=\pm 2

= > x = ± 1 => x = \pm 1 or x = ± i 3 x = \pm i\sqrt { 3 }

Antonio Fanari
Aug 8, 2014

H(x) = x^2 + 1; K(x) = - x^2 + 4; K(H(x)) = - (x^2 + 1)^2 + 4 = 0; suppose: x^2 + 1 = t, so: - t^2 + 4 = 0, t^2 = 4; => t1 = + 2; t2 = - 2;
1) x^2 + 1 = 2, x^2 = 1; => x1 = + 1; x2 = - 1;
2) x^2 + 1 = - 2, x^2 = - 3; => x3 = + i sqrt(3); x4 = - i sqrt(3);
Note: next time i will try to use an equation editor.


Mithun K
Aug 7, 2014

K ( H ( x ) ) = K ( x 2 + 1 ) = ( x 2 + 1 ) 2 + 4 K(H(x))\\ \qquad =K(x^{ 2 }+1)\\ \qquad =-(x^{ 2 }+1)^{ 2 }+4\\ \\ \\

N o w K ( H ( x ) ) = 0 ( x 2 + 1 ) 2 + 4 = 0 S o ( x 2 + 1 ) 2 4 = 0 [ M u l t i p l y i n g e a c h s i d e b y 1 ] ( x 2 + 1 ) 2 2 2 = 0 ( x 2 + 1 2 ) ( x 2 + 1 + 2 ) = 0 [ a 2 b 2 = ( a + b ) ( a b ) ] ( x 2 1 ) ( x 2 + 3 ) = 0 Now\quad K(H(x))=0 \quad \Rightarrow \quad -(x^{ 2 }+1)^{ 2 }+4=0\\ \\ \\ So\quad (x^{ 2 }+1)^{ 2 }-4=0\quad [Multiplying\quad each\quad side\quad by\quad -1]\\ \qquad (x^{ 2 }+1)^{ 2 }-{ 2 }^{ 2 }=0\\ \qquad (x^{ 2 }+1-{ 2) }*(x^{ 2 }+1+{ 2 })=0\quad [{ a }^{ 2 }-b^{ 2 }\quad =\quad (a+b)(a-b)]\\ \qquad (x^{ 2 }-1{ ) }*(x^{ 2 }+3{ )=0 }\\ \\ \\

H e n c e E i t h e r ( x 2 1 ) = 0 o r ( x 2 + 3 ) = 0 i f ( x 2 1 ) = 0 ( x + 1 ) ( x 1 ) = 0 Hence\quad \\ \qquad Either\quad (x^{ 2 }-1{ ) }=0\quad or\quad (x^{ 2 }+3{ )=0 }\\ \\ if\quad (x^{ 2 }-1{ ) }=0\quad \\ \qquad (x+1)*(x-1)=0\\

H e n c e ( x + 1 ) = 0 o r ( x 1 ) = 0 i . e x = 1 o r x = + 1 [ s o l u t i o n 1 x = ± 1 ] Hence\quad (x+1)=0\quad or\quad (x-1)=0\\ i.e\quad x=-1\quad or\quad x=+1\quad \quad [solution\quad 1\quad x=\pm 1]

i f ( x 2 + 3 ) = 0 i . e ( 1 ) x 2 + ( 0 ) x + ( 3 ) = 0 b y q u a d r a t i c s o l v i n g f o r m u l a [ x = b ± b 2 4 a c 2 2 a ] a = 1 , b = 0 , c = 3 x = 0 ± 0 4 1 3 2 2 1 x = ± 12 2 = ± i 3 [ s o l u t i o n 2 x = ± i 3 ] H e n c e t h e s o l u t i o n s a r e x = ± 1 , ± i 3 \quad \\ \\ if\quad (x^{ 2 }+3{ )=0 }\quad \quad i.e\quad (1)x^{ 2 }+(0)x+(3){ =0 }\\ by\quad quadratic\quad solving\quad formula\quad [x=\frac { -b\pm \sqrt [ 2 ]{ { b }^{ 2 }-4ac } }{ 2a } ]\\ a=1,\quad b=0,\quad c=3\\ \\ \\ \qquad x=\frac { -0\pm \sqrt [ 2 ]{ 0-4*1*3 } }{ 2*1 } \\ \\ \Rightarrow \quad x=\quad \frac { \pm \sqrt { -12 } }{ 2 } \quad =\quad \pm i\sqrt { 3 } \quad [solution\quad 2\quad x=\pm i\sqrt { 3 } ]\\ \\ \\ Hence\quad the\quad solutions\quad are\quad \quad x=\pm 1,\pm i\sqrt { 3 } \\

Your solution is nice.

Muhammad Mahdi Shahriar Sakib - 6 years, 9 months ago

Log in to reply

Thank you :)

Mithun K - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...