An Unexpected Number 2

Calculus Level 3

p n = p n 1 + p n 2 p 0 = 1 , p 1 = 2 q n = q n 1 + q n 2 q 0 = 1 , q 1 = 1 \displaystyle \large \begin{aligned} p_{n} &= p_{n-1} + p_{n-2} &p_0 = 1, \ p_1 = 2 \\ q_{n} &= q_{n-1} + q_{n-2} &q_0 = 1, \ q_1 = 1 \end{aligned}

Find lim n p n q n \displaystyle \lim_{n \rightarrow \infty} \frac{p_n}{q_n}

This is continued by this problem


The answer is 1.61803398875.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We note that p 0 = F 2 p_0 = F_2 and p 1 = F 3 p_1 = F_3 , where F n F_n is the n n th Fibonacci number. Then p 2 = F 2 + F 3 = F 4 p_2 = F_2+F_3 = F_4 , p 3 = F 5 p_3 = F_5 , p 4 = F 6 p_4 = F_6 , ..., implying that p n = F n + 2 p_n = F_{n+2} . Similarly, q n = F n + 1 q_n = F_{n+1} . Then we have:

L = lim n p n q n = lim n F n + 2 F n + 1 Since F n = φ n ( φ ) n 5 , where = lim n φ n + 2 ( φ ) n 2 φ n + 1 ( φ ) n 1 φ = 1 + 5 2 is the golden ratio. = lim n φ ( φ ) 2 n 3 1 ( φ ) 2 n 2 Divide up and down by φ n + 1 = φ 1.618 \begin{aligned} L & = \lim_{n \to \infty} \frac {p_n}{q_n} = \lim_{n \to \infty} \frac {F_{n+2}}{F_{n+1}} & \small \color{#3D99F6} \text{Since }F_n = \frac {\varphi^n - (-\varphi)^{-n}}{\sqrt 5} \text{, where} \\ & = \lim_{n \to \infty} \frac {\varphi^{n+2} - (-\varphi)^{-n-2}}{\varphi^{n+1} - (-\varphi)^{-n-1}} & \small \color{#3D99F6} \varphi = \frac {1+\sqrt 5}2 \text{ is the golden ratio.} \\ & = \lim_{n \to \infty} \frac {\varphi - (-\varphi)^{-2n-3}}{1 - (-\varphi)^{-2n-2}} & \small \color{#3D99F6} \text{Divide up and down by } \varphi^{n+1} \\ & = \varphi \approx \boxed{1.618} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...