An Unexpected Number 3 (Reuploaded)

Calculus Level 5

There was a mistake in the previous one, so I'm re-uploading it with the mistakes fixed

p n = 6 p n 1 + ( 2 n 1 ) 2 p n 2 p 1 = 1 , p 0 = 3 q n = 6 q n 1 + ( 2 n 1 ) 2 q n 2 q 1 = 0 , q 0 = 1 \displaystyle \large \begin{aligned} p_{n} &= 6p_{n-1} + (2n-1)^2p_{n-2} &p_{-1} = 1,\ p_0 = 3 \\ q_{n} &= 6q_{n-1} + (2n-1)^2q_{n-2} &q_{-1} = 0,\ q_0 = 1 \end{aligned}

Find lim n p n q n \displaystyle \lim_{n \rightarrow \infty} \frac{p_n}{q_n} .

This is a continuation of this problem


The answer is 3.14159265359.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Julian Poon
Dec 4, 2018

The answer is indeed π \pi .


Lemma: x p n 1 + ( 2 n 1 ) 2 p n 2 x q n 1 + ( 2 n 1 ) 2 q n 2 = ( 6 + ( 2 n 1 ) 2 x ) p n 2 + ( 2 n 3 ) 2 p n 3 ( 6 + ( 2 n 1 ) 2 x ) q n 2 + ( 2 n 3 ) 2 q n 3 \frac{xp_{n-1}+\left(2n-1\right)^2p_{n-2}}{xq_{n-1}+\left(2n-1\right)^2q_{n-2}} = \frac{\left(6+\cfrac{(2n-1)^2}{x}\right)p_{n-2}+(2n-3)^2p_{n-3}}{\left(6+\cfrac{(2n-1)^2}{x}\right)q_{n-2}+\left(2n-3\right)^2q_{n-3}} Proof:

x p n 1 + ( 2 n 1 ) 2 p n 2 x q n 1 + ( 2 n 1 ) 2 q n 2 = x ( 6 p n 2 + ( 2 n 3 ) 2 p n 3 ) + ( 2 n 1 ) 2 p n 2 x ( 6 q n 2 + ( 2 n 3 ) 2 q n 3 ) + ( 2 n 1 ) 2 q n 2 = ( 6 x + ( 2 n 1 ) 2 ) p n 2 + x ( 2 n 3 ) 2 p n 3 ( 6 x + ( 2 n 1 ) 2 ) q n 2 + x ( 2 n 3 ) 2 q n 3 = = ( 6 + ( 2 n 1 ) 2 x ) p n 2 + ( 2 n 3 ) 2 p n 3 ( 6 + ( 2 n 1 ) 2 x ) q n 2 + ( 2 n 3 ) 2 q n 3 \begin{aligned} \frac{xp_{n-1}+\left(2n-1\right)^2p_{n-2}}{xq_{n-1}+\left(2n-1\right)^2q_{n-2}} &= \frac{x\left(6p_{n-2}+\left(2n-3\right)^2p_{n-3}\right)+\left(2n-1\right)^2p_{n-2}}{x\left(6q_{n-2}+\left(2n-3\right)^2q_{n-3}\right)+\left(2n-1\right)^2q_{n-2}} \\ &= \frac{\left(6x+\left(2n-1\right)^2\right)p_{n-2}+x\left(2n-3\right)^2p_{n-3}}{\left(6x+\left(2n-1\right)^2\right)q_{n-2}+x\left(2n-3\right)^2q_{n-3}}= \\ &= \frac{\left(6+\cfrac{(2n-1)^2}{x}\right)p_{n-2}+\left(2n-3\right)^2p_{n-3}}{\left(6+\cfrac{(2n-1)^2}{x}\right)q_{n-2}+\left(2n-3\right)^2q_{n-3}} \end{aligned}


p n q n = 6 p n 1 + ( 2 n 1 ) 2 p n 2 6 q n 1 + ( 2 n 1 ) 2 q n 2 = [ 6 + ( 2 n 1 ) 2 6 ] p n 2 + ( 2 n 3 ) 2 p n 3 [ 6 + ( 2 n 1 ) 2 6 ] q n 2 + ( 2 n 3 ) 2 q n 3 = [ 6 + ( 2 n 3 ) 2 6 + ( 2 n 1 ) 2 6 ] p n 3 + ( 2 n 5 ) 2 p n 4 [ 6 + ( 2 n 3 ) 2 6 + ( 2 n 1 ) 2 6 ] q n 3 + ( 2 n 5 ) 2 q n 4 . . . = F n p 0 + 1 2 p 1 F n q 0 + 1 2 q 1 = 3 F n + 1 F n = 3 + 1 F n \begin{aligned} \frac{p_n}{q_n} &= \frac{6p_{n-1}+\left(2n-1\right)^2p_{n-2}}{6q_{n-1}+\left(2n-1\right)^2q_{n-2}} \\ &\quad \\ &=\frac{\left[6+\cfrac{(2n-1)^2}{6}\right]p_{n-2}+\left(2n-3\right)^2p_{n-3}}{\left[6+\cfrac{(2n-1)^2}{6}\right]q_{n-2}+\left(2n-3\right)^2q_{n-3}} \\ &\quad \\ &= \frac{\left[6+\cfrac{(2n-3)^2}{6+\cfrac{(2n-1)^2}{6}}\right]p_{n-3}+\left(2n-5\right)^2p_{n-4}}{\left[6+\cfrac{(2n-3)^2}{6+\cfrac{(2n-1)^2}{6}}\right]q_{n-3}+\left(2n-5\right)^2q_{n-4}}\\ &\quad \\ & ... \\ &\quad \\ &=\frac{F_np_0+1^2p_{-1}}{F_nq_0+1^2q_{-1}}=\frac{3F_n+1}{F_n}=3+\frac{1}{F_n} \end{aligned}

Where I've applied the lemma repeatedly and F n = 6 + 3 2 6 + 5 2 6 + 7 2 . . . + . . . 6 + ( 2 n 1 ) 2 6 \displaystyle F_n=6+\cfrac{3^2}{6+\cfrac{5^2}{6+\cfrac{7^2}{...+\cfrac{...}{6+\cfrac{\left(2n-1\right)^2}{6}}}}}

Hence

lim n p n q n = lim n 3 + 1 F n = 3 + 1 2 6 + 3 2 6 + 5 2 6 + 7 2 . . . = π ( ) \lim_{n \rightarrow \infty} \frac{p_n}{q_n} = \lim_{n \rightarrow \infty} 3+\frac{1}{F_n}=3+\cfrac{1^2}{6+\cfrac{3^2}{6+\cfrac{5^2}{6+\cfrac{7^2}{...}}}} = \pi \quad{(*)}

( ) (*) is a well known continued fraction for π \pi .

Bonus: By considering the sum n = 1 ( 1 ) n n ( n + 1 ) ( 2 n + 1 ) \displaystyle \sum_{n=1}^{\infty}\frac{(-1)^n}{n(n+1)(2n+1)} , proof ( ) (*) using Euler's Continued Fraction Formula.

Otto Bretscher
Dec 5, 2018

We can show, by induction, that q n = ( n + 1 ) ( 2 n + 1 ) ! ! q_n=(n+1)(2n+1)!! , and it is not hard to see that p n π q n < ( 2 n + 1 ) ! ! p_n-\pi q_n<(2n+1)!! , so that lim n p n π q n q n = 0 \lim_{n \to \infty}\frac{p_n-\pi q_n}{q_n}=0 and lim n p n q n = π \lim_{n \to \infty}\frac{p_n}{q_n}=\pi .

@Otto Bretscher Wait...what?? Sir, how did you even come to the general formula for the sequence q_n ?????!! I mean, Induction can only be done AFTER we arrive at the formula.........

Aaghaz Mahajan - 2 years, 6 months ago

Log in to reply

If you analyse the ratio r n = q n q n 1 r_n=\frac{q_n}{q_{n-1}} , as one naturally does in a situation like this, you are led to conjecture that r n = 2 n + 3 + 1 n = ( n + 1 ) ( 2 n + 1 ) n r_n=2n+3+\frac{1}{n}=\frac{(n+1)(2n+1)}{n} ; for example, r 8 = 19.125 , r 9 = 21 + 1 9 , r 10 = 23.1 r_8=19.125, r_9=21+\frac{1}{9}, r_{10}=23.1 . From here you can write and prove the closed form q n = ( n + 1 ) ( 2 n + 1 ) ! ! q_n=(n+1)(2n+1)!! rather easily.

Otto Bretscher - 2 years, 6 months ago

Incredibly elegant, Sir Otto!!

tom engelsman - 6 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...