An unknown pitcher

An unknown pitcher, with unknown weight, height, and age throws a ball of unknown weight and size, in a cubic room with unknown dimensions. He throws the ball at A, and the ball touches the roof and falls at B. At what angle (in degrees) did he throw the ball?


The answer is 67.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Paola Ramírez
Jan 15, 2015

X X -axis

V 0 cos θ t = 2 x V_0 \cos\theta t=2x

---------------------------------------------------------------------------------

Y Y -axis

0 = V 0 g t 1 0=V_{0}-gt_1

V 0 = g t 1 V_{0}=gt_1

0 2 = ( g t 1 ) 2 2 g ( x ) 0^2=(gt_1)^2-2g(x)

( g t ) 2 = 2 g ( x ) (gt)^2=2g(x)

g t 1 2 = 2 x gt_1^{2}=2x

t 1 = 2 x g t_1=\sqrt{\frac{2x}{g}} (time: he throws-touch the roof)

V f 2 = 2 g ( 2 x ) {V_f}^2=-2g(-2x) (since the roof until floor)

V f = 0 g t 2 {V_f}=0-gt_2

4 x g = g 2 t 2 2 4xg=g^{2}t_2^{2}

t 2 = 4 x g t_2=\sqrt{\frac{4x}{g}}

Total time

t t = 4 x g + 2 x g t_t=\sqrt{\frac{4x}{g}}+\sqrt{\frac{2x}{g}}

V 0 sin θ = g t 1 V_0\sin \theta=gt_1

-------------------------------------------------------------------------------

V 0 sin θ V 0 cos θ t t = g t 1 2 x \frac{V_0 \sin \theta}{V_0 \cos\theta t_t}=\frac{gt_1}{2x}

V 0 sin θ V 0 cos θ = g t 1 t t 2 x \frac{V_0 \sin \theta}{V_0 \cos\theta }=\frac{gt_1t_t}{2x}

V 0 s i n θ V 0 c o s θ = 1 + 2 \frac{V_0 sin \theta}{V_0 cos\theta }=1+\sqrt{2}

tan θ = 1 + 2 \tan\theta=1+\sqrt{2}

θ = 67.5 ° \theta= 67.5°

Chew-Seong Cheong
Jan 16, 2015

Let the initial velocity and the angle of throw with the horizon be v v and θ \theta respectively.

If the ball touches the ceiling at time t = t 1 t = t_1 , then:

0 = v sin θ g t 1 v sin θ = g t 1 0 = v\sin{\theta} - gt_1 \quad \Rightarrow v\sin{\theta} = gt_1

Now, the vertical displacement y ( t ) y(t) at time t t is given by:

y ( t ) = v sin θ t 1 2 g t 2 = v sin θ ( t t 2 2 t 1 ) y(t) = v\sin{\theta}t - \frac{1}{2}gt^2 = v\sin{\theta}\left( t - \dfrac{t^2}{2t_1} \right)

y ( t 1 ) = x = v sin θ ( t 1 t 1 2 2 t 1 ) = 1 2 v sin θ t 1 \Rightarrow y(t_1) = x = v\sin{\theta}\left( t_1- \dfrac{t_1^2}{2t_1} \right) = \frac {1}{2} v\sin{\theta} t_1

Let the ball hit point B B at t 2 t_2 , then:

y ( t 2 ) = x = v sin θ ( t 2 t 2 2 2 t 1 ) \Rightarrow y(t_2) = -x = v\sin{\theta}\left( t_2- \dfrac{t_2^2}{2t_1} \right) and since x = 1 2 v sin θ t 1 x = \frac {1}{2} v\sin{\theta} t_1 .

v sin θ ( t 2 t 2 2 2 t 1 ) = 1 2 v sin θ t 1 v sin θ ( t 2 t 2 2 2 t 1 + t 1 2 ) = 0 \Rightarrow v\sin{\theta}\left( t_2- \dfrac{t_2^2}{2t_1} \right) = - \frac {1}{2} v\sin{\theta} t_1 \quad \Rightarrow v\sin{\theta}\left( t_2- \dfrac{t_2^2}{2t_1} + \dfrac {t_1}{2} \right) = 0

t 2 t 2 2 2 t 1 + t 1 2 = 0 t 2 2 2 t 1 t 2 t 1 2 = 0 \Rightarrow t_2- \dfrac{t_2^2}{2t_1} + \dfrac {t_1}{2} = 0 \quad \Rightarrow t_2^2 - 2t_1t_2 - t_1^2 = 0

t 2 = 2 t 1 + 4 t 1 2 + 4 t 1 2 2 = t 1 ( 1 + 2 ) \Rightarrow t_2 = \dfrac {2t_1 + \sqrt{4t_1^2+4t_1^2}}{2} = t_1(1+\sqrt{2})

We know that: v cos θ t 2 = 2 x x = 1 2 v cos θ t 1 ( 1 + 2 ) v\cos{\theta}t_2 = 2x \quad \Rightarrow x = \frac {1}{2} v \cos {\theta} t_1(1+\sqrt{2}) .

x = 1 2 v sin θ t 1 = 1 2 v cos θ t 1 ( 1 + 2 ) tan θ = 1 + 2 \Rightarrow x = \frac {1}{2} v\sin{\theta} t_1 = \frac {1}{2} v \cos {\theta} t_1(1+\sqrt{2})\quad \Rightarrow \tan {\theta} = 1+\sqrt{2}

θ = tan 1 1 + 2 = 67. 5 \Rightarrow \theta = \tan^{-1} {1+\sqrt{2}} = \boxed{67.5^\circ}

Let me give every one a better graphic.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...