An Unlucky Number?

Algebra Level 4

n = 0 2 n 1 3 2 n + 1 \large \displaystyle \sum_{n=0}^\infty \frac {2^n}{13^{2^n} + 1}

The closed form of the above summation is equals to p q \frac p q for coprime positive integers p , q p,q . What is the value of p + q p+ q ?


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Consider n = 0 m ln ( x 2 n + y 2 n ) \sum_{n=0}^{m}\ln{(x^{2^n}+y^{2^n})}

n = 0 m ln ( x 2 n + y 2 n ) = ln n = 0 m ( x 2 n + y 2 n ) d d y ( n = 0 m ln ( x 2 n + y 2 n ) ) = d d y ( ln n = 0 m ( x 2 n + y 2 n ) ) n = 0 m 2 n y 2 n 1 x 2 n + y 2 n = d d y ( ln ( x 1 + y 1 ) ( x 2 + y 2 ) ( x 4 + y 4 ) . . . ( x 2 m + y 2 m ) ) = d d y ( ln ( ( x y ) ( x + y ) ( x 2 + y 2 ) ( x 4 + y 4 ) . . . ( x 2 m + y 2 m ) ( x y ) ) ) = d d y ( ln ( x 2 m + 1 y 2 m + 1 ( x y ) ) ) = d d y ( ln ( x 2 m + 1 y 2 m + 1 ) ln ( x y ) ) n = 0 m 2 n y 2 n 1 x 2 n + y 2 n = 1 x y 2 m + 1 y 2 m + 1 1 x 2 m + 1 y 2 m + 1 \sum_{n=0}^{m}\ln{(x^{2^n}+y^{2^n})} = \ln{\prod_{n=0}^{m}(x^{2^n}+y^{2^n})} \\ \frac{d}{dy}(\sum_{n=0}^{m}\ln{(x^{2^n}+y^{2^n})}) = \frac{d}{dy}(\ln{\prod_{n=0}^{m}(x^{2^n}+y^{2^n})})\\ \sum_{n=0}^{m}\frac{2^ny^{2^n-1}}{x^{2^n}+y^{2^n}} = \frac{d}{dy}(\ln{(x^1+y^1)(x^2+y^2)(x^4+y^4)...(x^{2^m}+y^{2^m})}) \\ = \frac{d}{dy}(\ln{\Big(\frac{(x-y)(x+y)(x^2+y^2)(x^4+y^4)...(x^{2^m}+y^{2^m})}{(x-y)}\Big)}) \\ = \frac{d}{dy}(\ln{\Big(\frac{x^{2^{m+1}}-y^{2^{m+1}}}{(x-y)}\Big)}) \\ = \frac{d}{dy}(\ln{(x^{2^{m+1}}-y^{2^{m+1}})}-\ln{(x-y)}) \\ \sum_{n=0}^{m}\frac{2^ny^{2^n-1}}{x^{2^n}+y^{2^n}} = \frac{1}{x-y}-\frac{2^{m+1}y^{2^{m+1}-1}}{x^{2^{m+1}}-y^{2^{m+1}}}

Now, we take limit,

lim m n = 0 m 2 n k 2 n + 1 = 1 k 1 lim m 2 m + 1 k 2 m + 1 1 = 1 k 1 lim m 2 m + 1 ln 2 2 m + 1 k 2 m + 1 1 1 k 1 lim m ln 2 k 2 m + 1 1 = 1 k 1 \lim_{m\rightarrow\infty}\sum_{n=0}^{m}\frac{2^n}{k^{2^n}+1} = \frac{1}{k-1}-\lim_{m\rightarrow\infty}\frac{2^{m+1}}{k^{2^{m+1}}-1} = \frac{1}{k-1}-\lim_{m\rightarrow\infty}\frac{2^{m+1}\ln{2}}{2^{m+1}k^{2^{m+1}-1}} \\ \frac{1}{k-1}-\lim_{m\rightarrow\infty}\frac{\ln{2}}{k^{2^{m+1}-1}} \\ = \frac{1}{k-1}

With k = 13 k=13 , we have the summation equal to 1 12 \frac{1}{12}

This problem reminds me very much of Awesome math (december undergraduate problem ( MR_6 2014 U320) which ask's for calculating n = 0 2 n 1 3 2 n + 1 \sum_{n=0}^{\infty} \frac{2^n}{13^{2^n}+1} . But there solution was like by using hit and trial and proving the observation using induction. This solution is much more nicer :)

Shivang Jindal - 6 years, 2 months ago

great solution !

Gaurav Jain - 5 years, 12 months ago
Patrick Corn
Mar 25, 2015

I claim that n = 0 k 1 2 n 1 3 2 n + 1 = 1 12 2 k 1 3 2 k 1 . \sum_{n=0}^{k-1} \frac{2^n}{13^{2^n}+1} = \frac1{12} - \frac{2^k}{13^{2^k}-1}. To see this, we induct on k k . It's clear for k = 1 k = 1 : 1 14 = 1 12 2 168 \frac1{14} = \frac1{12} - \frac2{168} . Now suppose this is true for k k . Then we get n = 0 k 2 n 1 3 2 n + 1 = 1 12 2 k 1 3 2 k 1 + 2 k 1 3 2 k + 1 = 1 12 2 2 k ( 1 3 2 k 1 ) ( 1 3 2 k + 1 ) = 1 12 2 k + 1 1 3 2 k + 1 1 \begin{aligned} \sum_{n=0}^k \frac{2^n}{13^{2^n}+1} &= \frac1{12} - \frac{2^k}{13^{2^k}-1} + \frac{2^k}{13^{2^k}+1} \\ &= \frac1{12} - \frac{2 \cdot 2^k}{(13^{2^k}-1)(13^{2^k}+1)} \\ &= \frac1{12} - \frac{2^{k+1}}{13^{2^{k+1}}-1} \end{aligned}

as desired. So the claim is true for k + 1 k+1 , hence always true by induction.

Now taking the limit as k k \to \infty gives a sum of 1 / 12 1/12 , so the answer is 13 \fbox{13} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...