An unrelated triangle

Geometry Level 4

Points A , B , A, B, and C C are lying on a circle centered at P P such that A C AC intersects B P BP at D , D, where A D = 7 , A P B ( α ) = 12 0 , AD=7, \angle APB\, (\alpha) = 120^{\circ}, and 3 [ A D B ] = 2 [ A D P ] . 3[ADB]= 2[ADP].

If the area of C P D \triangle CPD can be expressed in the form a b c \dfrac{a \sqrt{b}}{c} for positive integers a , b , a, b, and c c such that a , c a,c are coprime, and b b is square-free, determine a + b + c . a + b + c.


Notation: [ ] [\,\cdot\,] denotes the area of the figure.


The answer is 112.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 11, 2017

Let the radius of the circle be r r . Since A B D \triangle ABD and A D P \triangle ADP are sharing the altitude A E AE , this means that the areas of the two triangles are directly proportional to the base lengths that is:

B D D P = [ A B D ] [ A D P ] Since 3 [ A B D ] = 2 [ A D P ] = 2 3 B D = 2 3 D P Note that B D + D P = r B D + D P = r 5 3 D P = r D P = 3 5 r \begin{aligned} \frac {BD}{DP} & = \frac {[ABD]}{[ADP]} & \small \color{#3D99F6} \text{Since } 3[ABD] = 2[ADP] \\ & = \frac 23 \\ \implies BD & = \frac 23 DP & \small \color{#3D99F6} \text{Note that } BD+DP = r \\ BD+DP & = r \\ \frac 53 DP & = r \\ \implies DP & = \frac 35 r \end{aligned}

By cosine rule , we have:

D P 2 + A P 2 2 ( D P ) ( A P ) cos α = A D 2 ( 3 5 r ) 2 + r 2 2 × 3 5 r × r × cos 12 0 = 7 2 49 25 r 2 = 49 r = 5 \begin{aligned} DP^2 + AP^2 - 2(DP)(AP)\cos \alpha & = AD^2 \\ \left(\frac 35 r\right)^2 + r^2 - 2 \times \frac 35 r \times r \times \cos 120^\circ & = 7^2 \\ \frac {49}{25}r^2 & = 49 \\ \implies r & = 5 \end{aligned}

Let A C P = D A P = β \angle ACP = \angle DAP = \beta and A D P = γ \angle ADP = \gamma . By sine rule :

sin D A P D P = sin A D P A P = sin A P D A D sin β 3 = sin γ 5 = sin α 7 = 3 14 \begin{aligned} \frac {\sin \angle DAP}{DP} & = \frac {\sin \angle ADP}{AP} = \frac {\sin \angle APD}{AD} \\ \frac {\sin \beta}3 & = \frac {\sin \gamma}5 = \frac {\sin \alpha}7 = \frac {\sqrt 3}{14} \end{aligned}

{ sin β = 3 3 14 cos β = 13 14 sin γ = 5 3 14 cos γ = 11 14 \implies \begin{cases} \sin \beta = \dfrac {3\sqrt 3}{14} & \implies \cos \beta = \dfrac {13}{14} \\ \sin \gamma = \dfrac {5\sqrt 3}{14} & \implies \cos \gamma = \dfrac {11}{14} \end{cases}

Let P F PF be the altitude of P A C \triangle PAC , then we have:

[ C P D ] = [ C P F ] [ D P F ] = 1 2 ( C F ) ( P F ) 1 2 ( D F ) ( P F ) = 1 2 C P 2 sin β cos β 1 2 D P 2 sin γ cos γ = 5 2 2 × 3 3 14 × 13 14 3 2 2 × 5 3 14 × 11 14 = 60 3 49 \begin{aligned} [CPD] & = [CPF] - [DPF] \\ & = \frac 12 (CF)(PF) - \frac 12 (DF)(PF) \\ & = \frac 12 CP^2\sin \beta \cos \beta - \frac 12 DP^2 \sin \gamma \cos \gamma \\ & = \frac {5^2}2 \times \frac {3\sqrt 3}{14} \times \frac {13}{14} - \frac {3^2}2 \times \frac {5\sqrt 3}{14} \times \frac {11}{14} \\ & = \frac {60\sqrt 3}{49} \end{aligned}

a + b + c = 112 \implies a+b+c = \boxed{112}

Rajen Kapur
May 11, 2017

The given ratio of areas implies that P D = 3 5 A P PD=\frac{3}{5}AP as BP=AP. Using cosine formula on α = 12 0 \alpha=120^\circ of Δ A P D \Delta APD A P 2 + ( 3 5 ) 2 A P 2 + 3 5 A P 2 = 7 2 A P = 5 AP^2+(\frac{3}{5})^2AP^2+\frac{3}{5}AP^2=7^2\rightarrow AP=5 . Hence PD=3, and CP=AP=5. Now the three sides of Δ B A D \Delta BAD are AD=7, A B = 5 3 AB=5\sqrt{3} and BD=2, we get c o s B A D = 4 3 7 cos\angle BAD=\frac{4\sqrt3}{7} using cosine formula. Using the fact that angle at the center C P B \angle CPB is twice of the angle at the circumference B A D \angle BAD , we get c o s C P D = c o s C P B = 2 c o s 2 B A D 1 = 47 49 cos\angle CPD=cos\angle CPB=2cos^2\angle BAD -1=\frac{47}{49} giving s i n C P D = 8 3 49 sin\angle CPD= \frac{8\sqrt{3}}{49} . Now knowing the sides and sine of the included angle area is 1 2 3 5 8 3 49 = 60 3 49 \frac{1}{2} \cdot 3 \cdot 5 \cdot \frac {8\sqrt{3}}{49} = \frac{60\sqrt{3}}{49} thus the answer is 112.

Efren Medallo
May 11, 2017

We can easily prove that since A D AD divides Δ A B P \Delta ABP into two triangles at a 3 : 2 3:2 ratio, then A D AD also divides B P BP by such proportion. That is, Δ A D P Δ A D B = D P D B = 3 2 \frac {\Delta ADP}{\Delta ADB} = \frac{DP}{DB} = \frac{3}{2} . (See note below)

Let x x be one fifth of the length of P B PB , so that D B = 2 x DB = 2x and D P = 3 x DP = 3x . From here we can express the areas of both triangles in terms of x x .

By Heron's formula, we get the area of Δ A D P \Delta ADP as:

Δ A D P = 1 4 ( 256 x 4 3332 x 2 + 2401 ) \Delta ADP = \frac{1}{4} \sqrt{ -(256x^4 - 3332x^2 + 2401)}

In a similar way,

Δ A D B = 1 4 ( 5041 x 4 7742 x 2 + 2401 ) \Delta ADB = \frac{1}{4} \sqrt{ -(5041x^4 - 7742x^2 + 2401)}

Equating these values to the ratio, and simplifying the equation, we get

44345 x 4 56350 x 2 + 12005 = 0 44345x^4 - 56350x^2 + 12005 = 0

( x 2 1 ) ( 44345 x 2 12005 ) = 0 (x^2 - 1)(44345x^2 - 12005) = 0

x = ± 1 ; x = ± 7 181 x = \pm 1 \:\:\: ; x = \pm \frac{7}{\sqrt{181}}

Clearly, there are two positive values of x x . However, only the value x = 1 x=1 conforms to the triangle inequality when substituted.

Now, substituting that, we get the dimensions for Δ A D P \Delta ADP . We now draw an altitude from vertex P P to A D AD at a point we'll name Q Q . From there, we can determine lengths D Q DQ and A Q AQ , using this.

9 y 2 = 25 ( 7 y ) 2 9 - y^2 = 25 - (7-y)^2

Solving that gives y = 33 14 y = \frac{33}{14} and 7 y = 65 14 7 - y = \frac{65}{14} .

Now, we can find θ \theta . I mean, cos θ \cos \theta .

cos θ = 13 14 \cos \theta = \frac{13}{14}

From which we can derive

sin θ = 3 3 14 \sin \theta = \frac{3 \sqrt{3}}{14}

sin 2 θ = 39 3 98 \sin 2\theta = \frac{39 \sqrt{3}}{98}

cos 2 θ = 71 98 \cos 2\theta = \frac{71}{98}

Now, going back to the circle. Observe that P A C P C A \angle PAC \cong \angle PCA , so P C A = θ \angle PCA = \theta . It then follows that C P A = 180 2 θ \angle CPA = 180 - 2\theta . And C P D = 60 2 θ \angle CPD = 60 - 2 \theta .

Now, we are equipped with all the necessary requirements for the area of Δ C P D \Delta CPD .

Δ C P D = 1 2 c d sin P \Delta CPD = \frac{1}{2} cd \sin P

= 1 2 3 5 sin ( 60 2 θ ) = \frac{1}{2} \cdot 3 \cdot 5 \cdot \sin (60 - 2\theta)

= 15 2 ( sin 60 cos 2 θ cos 60 sin 2 θ ) = \frac{15}{2} ( \sin 60 \cos 2\theta - \cos 60 \sin 2\theta)

= 15 2 ( 3 2 71 98 1 2 39 3 98 ) = \frac{15}{2} ( \frac{\sqrt{3}}{2} \cdot \frac{71}{98} - \frac{1}{2} \cdot \frac{39 \sqrt{3}}{98})

= 15 2 ( 8 3 49 ) = \frac{15}{2} ( \frac{8 \sqrt{3}}{49} )

= 60 3 49 = \frac{60 \sqrt{3}}{49}

So, 60 + 3 + 49 = 112 60 + 3 + 49 = \boxed {112} .

Note:

If we look at P B PB as the base of Δ A P B \Delta APB , we can see that as well as for both triangles Δ A P D \Delta APD and Δ A B D \Delta ABD , their heights are the same. So, their areas are directly proportional to the lengths of these bases, i.e., the lengths P D PD and B D BD .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...